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Abstract— Retrospective correction of intensity inhomo-
geneities in magnetic resonance images of the brain is an
essential pre-processing step before any sophisticated image
analysis task can be performed. A popular choice when defining
the degradation model in MR images is to use multiplicative
intensity inhomogeneities that slowly varying across the image
domain; this approach has been extensively used for bias
field estimation. However, such a multiplicative model is often
insufficient given that some of the most dominant physical
causes of intensity inhomogeneities in MRI (such as non-
uniform excitation strength) have a non-linear relationship
with the receptor signal intensity. In this study, we consider
a linear image degradation model with multiplicative and
additive intensity inhomogeneity components. We propose a
variational level sets approach that combines estimation of
intensity inhomogeneity components during the image seg-
mentation process. The evaluation of proposed approach on
real MR image datasets demonstrate accurate estimation of
multiplicative and additive intensity inhomogeneities improving
brain tissue segmentation.

I. INTRODUCTION
Magnetic Resonance Imaging (MRI) is the most com-

monly used neuro-imaging method for producing high con-
trast volumetric images of the brain. However, it is a difficult
and highly time intensive process to extract important infor-
mation from the large number of voxels in a typical MR
data set. Automatic image analysis tools, whose goals are to
extract clinically relevant information and better present it
to physicians for diagnosis and treatment planning purposes
have recently received significant attention as a promising
avenue to overcome some of the limitations of manual
inspection of MR images. However, pre-processing of MR
images is typically required to minimize image artifacts (such
as image noise, intensity inhomogeneities, partial volume
effects, etc.), which often adversely affect the performance
of image analysis tools.

Intensity inhomogeneities in MR images are one such ad-
verse phenomena that manifest as smooth, relatively slowly
changing intensity variations across the image domain. They
are also commonly referred to as radio frequency (RF) inho-
mogeneity, intensity non-uniformity, bias field, and shading
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artifacts. The root causes of intensity inhomogeneities in
MR images are due to non-uniform RF excitation, non-
uniform coil receptor sensitivity, and standing wave effects
[1], [2]. Other minor factors that can produce intensity
inhomogeneities are eddy currents due to rapid switching
of magnetic field gradients, patient induced electromagnetic
interactions, and geometric distortions. Although these in-
tensity variations have little effect on visual interpretation of
MR images, they significantly degrade the performance of
automated image analysis routines such as for segmentation
or registration. Therefore, correction for intensity inhomo-
geneities is a necessary preprocessing step before conducting
any sophisticated automatic image analyses.

The correction methods for intensity inhomogeneities
can be broadly classified into prospective and retrospec-
tive methods. Prospective correction usually requires special
imaging sequences using physical phantoms and multiple
reception coils, with subsequent MRI scanner calibration
after assessing the excitation field strength, and the non-
uniformity of each reception coil [1], [2], [3]. Prospective
methods can correct for static intensity variations occur-
ring due to imperfections in the instrument, however they
cannot deal with patient-induced intensity inhomogeneities
and are often impractical in the clinical setting because
they typically require considerably longer scanning routines.
Retrospective correction methods, on the other hand, only
use the information contained within the captured image and
therefore can be used to correct any MR image. Retrospective
correction methods are thus much more relevant for clinical
use, however they have limited ability to distinguish between
scanner and patient-induced inhomogeneities.

A variety of retrospective correction methods have been
proposed in the literature. Homographic filtering methods
have been proposed that assume the frequency spectrum
of the bias field is different from that of the anatomical
structures, which is often not true in MR images [4], [5], [6].
Polynomial spline fitting and hypersurface models have also
been considered to model the bias field using a combination
of manually and automatically selected reference points [6],
[7]; histogram matching to minimize the squared residual
error within a window of pixel intensities has also been con-
sidered as a solution to bias field correction [8]. A common
approach is to estimate the intensity inhomogeneities during
the process of image segmentation, and several maximum-
likelihood (ML) and maximum a posteriori probability
(MAP) approaches have been proposed that fit parametric
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models to image regions and estimate model parameters via
Expectation-Maximization (EM) algorithm [6], [7]. For a
detailed discussion and comparison of existing methods, see
[9].

Models of image formation typically consider a multiplica-
tive bias field corrupting the image in combination with an
additive noise component. The additive noise is often re-
moved using frequency filtering, regularizations, and smooth
model fitting [9]. Additionally, logarithmic transformations
are often used to convert multiplicative terms into additive
terms. However, the use of a multiplicative model may not be
sufficient to correct for intensity inhomogeneities produced
by a wide range of possible physical sources.

Generally, a linear relationship is assumed to exist be-
tween sensitivity of the reception coil and the measured
signal intensity and, therefore, spatial variations in the coil
sensitivity can be modeled using a multiplicative field that
scales the measured signal intensity. However, intensity in-
homogeneities introduced by RF non-uniformities cannot be
exactly modeled using a multiplicative field because of the
non-linear relationship between excitation field strength and
measure signal intensity. The broad use of higher magnetic
field strengths in MR imaging, increases the contributions
in intensity inhomogeneties resulting from sources such as
eddy currents, patient induced electromagnetic interactions,
and geometric distortions which cant be estimated using
multiplicative models in MR images.

In this study, we consider a linear image degradation
model that uses a multiplicative and an additive component
to model intensity inhomogeneity in the MR images. We
propose a variational approach in a level set framework that
combines the two tasks of intensity inhomogeneity correction
and brain tissue segmentation.

II. DESCRIPTION OF THE MODEL

A. Problem Formulation

Let I(x, y) be the actual MR image and Ĩ(x, y) be the
idealized uncorrupted image of the same object, related to
each other by

I(x, y) = f(Ĩ(x, y)), (x, y) ∈ Ω

where, f(.) is the model of image degradation resulting from
noise and artifacts, and Ω denotes the image domain. The
goal of retrospective bias field correction is estimation of
degradation function the f(.), which can be used to recover
the ideal image Ĩ(x, y) using, Ĩ(x, y) = f−1(I(x, y)).
In prospective correction, the degradation model is exper-
imentally estimated before capturing the image of interest,
whereas in retrospective bias field correction the exact form
of the degradation model is unknown a priori. In this study,
we consider a linear degradation model consisting of additive
and multiplicative intensity inhomogeneities and additive
Gaussian noise,

I(x, y) = w1(x, y)Ĩ(x, y) + w2(x, y) + η(x, y) (1)

where, w1(x, y) and w2(x, y) are the multiplicative and
additive components of intensity inhomogeneities, respec-
tively, and η(x, y) is Gaussian additive noise with zero mean∫

Ω
η(x, y)dxdy = 0. To account for tissue heterogeneities

and partial volume effects in brain MR images, we represent
Ĩ(x, y) as distinct regions Rj each with normally distributed
intensities with means and covariances as ~Λj = {cj , σj},
j = 1...n. The terms in (1) can be estimated by minimizing
an objective function that contains contributions from fitting
and smoothness terms,

Fenergy = Ffit + Fsmooth (2)

where, Ffit is equivalent to maximizing the joint log-
likelihood over all image pixels,

Ffit =

n∑
j=1

∫
(x,y)∈Rj

[
log(σj) +

(Ĩ(x, y)− cj)2

2σ2
j

]
dxdy (3)

Fsmooth is the smoothness term that controls for the slowly
varying intensity inhomogeneities,

Fsmooth = v1

∫
Ω

|∇w1|2dxdy + v2

∫
Ω

|D2w1|2dxdy

+v3

∫
Ω

|∇w2|2dxdy + v4

∫
Ω

|D2w2|2dxdy (4)

where, D2(.) is the Hessian operator defined as D2w =(
wxx wxy
wyx wyy

)
, and |D2w| =

√
w2
xx + 2w2

xy + w2
yy .

B. Active Contour Model and Level Set Formulation

We minimize the objective function (2) in an active con-
tour framework to obtain the desired tissue segmentation and
estimate the degradation model. In an active contour model,
a curve C evolves on the image domain Ω under an external
force partitioning the image into two distinct regions: Cin
denoting the image region bounded by C, and Cout denoting
the image region outside of C. In the proposed active contour
model, we minimize the following energy functional,

E(C) = µ.Length(C) + β.Area(Cin) + Fenergy (5)

where, µ, β ≥ 0 are fixed parameters. The first two terms
are regularization terms that enforce local constraints on
the curve, while Fenergy represents the external force on
the curve. The minimization of the energy functional (5)
is difficult in terms of the image regions Rj , j = 1, ..n.
Using a level set formulation [10] enables representation of
the image regions Rj and evolving curve C in terms of a
higher dimensional Lipschitz function Φ : Ω → R [6] such
that

Φ(x, y) =


= 0 at C
> 0 inside C, (x, y) ∈ Ω

< 0 outside C

The energy minimization can be solved using well-
established variational methods [11]. In this study, we con-
sider a two-phase problem with image regions R1 and R2
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defined by Cin and Cout, respectively. Using the Heaviside
function H and Dirac measure δ:

H(z) =

{
1 if z > 0
0 if z < 0

, δ(z) =
d

dz
H(z)

we can represent the energy functional (5) in terms of
Φ(x, y), H(x, y) and δ(x, y),

E(Φ, w1, w2, ~Λ1, ~Λ2) = µ

∫
Ω

δ(Φ)|∇Φ|dxdy

+ β

∫
Ω

H(Φ)dxdy + λ1

∫
Ω

(I − w2 − c1w1)2

2w2
1σ

2
1

H(Φ)dxdy

+ λ2

∫
Ω

(I − w2 − c2w1)2

2w2
1σ

2
2

H(−Φ)dxdy

+ λ1

∫
Ω

log(σ1)H(Φ)dxdy + λ2

∫
Ω

log(σ2)H(−Φ)dxdy

+ v1

∫
Ω

|∇w1|2dxdy + v2

∫
Ω

|D2w1|2dxdy

+ v3

∫
Ω

|∇w2|2dxdy + v4

∫
Ω

|D2w2|2dxdy (6)

The intensity distribution parameters Λ1 and Λ2 can be
obtained by minimizing E(Φ, w1, w2, ~Λ1, ~Λ2) with respect
to cj and σj , keeping Φ(x, y), w1(x, y) and w2(x, y) fixed.

c1 =

∫
Ω

(I − w2)H(Φ)dxdy∫
Ω
w1H(Φ)dxdy

, c2 =

∫
Ω

(I − w2)H(−Φ)dxdy∫
Ω
w1H(−Φ)dxdy

σ2
1 =

∫
Ω

(I − w2 − c1w1)2H(Φ)dxdy∫
Ω
w2

1H(Φ)dxdy

σ2
2 =

∫
Ω

(I − w2 − c2w1)2H(−Φ)dxdy∫
Ω
w2

1H(−Φ)dxdy
(7)

Minimizing the energy functional (6) with respect to Φ, w1,
and w2 while keeping Λ1,Λ2 fixed, gives the associated
Euler-Lagrange equations. Parameterization by an artificial
time t ≥ 0 gives the following update equations for
Φ(x, y, t), w1(x, y, t), and w2(x, y, t) in the gradient descent
directions,

∂w1

∂t
= λ1

(I − w2 − w1c1)(I − w2)

w3
1σ

2
1

H(Φ) + 2v1∆w1

+ λ2
(I − w2 − w1c2)(I − w2)

w3
1σ

2
2

H(−Φ)− 2v2∆2w1

(8)
∂w2

∂t
= λ1

(I − w2 − w1c1)

w2
1σ

2
1

H(Φ) + 2v3∆w2 − 2v4∆2w2

+ λ2
(I − w2 − w1c2)

w2
1σ

2
2

H(−Φ) (9)

∂Φ

∂t
= δ(Φ)

[
µ · div

( ∇Φ

|∇Φ|

)
− β + λ2log(σ2)− λ1log(σ1)

− λ1
(I − w2 − w1c1)2

2w2
1σ

2
1

+ λ2
(I − w2 − w1c2)2

2w2
1σ

2
2

]
(10)

where, ∆(.) denotes the Laplacian operator. We impose
zero boundary conditions for the 1st, 2nd, and 3rd order
partial derivatives of w1 and w2 on ∂Ω to ensure smoothness

on the boundaries. At t = 0, the initial level set, the
multiplicative and the additive inhomogeneities are defined
by Φ0(x, y), w0

1(x, y), and w0
2(x, y), respectively.

C. Numerical Implementation

We use C∞(Ω̄) regularized versions of the Heaviside func-
tion and Dirac measure denoted by Hε and δε, as described in
[12] for computing the associated Euler-Lagrange equations
in (8), (9), (10),

Hε(z) =
1

2

(
1 +

2

π
arctan

(z
ε

))
Accordingly, the regularized Dirac measure δε is defined as
the derivative of Hε,

δε(z) =
∂Hε

∂z
=

1

π

ε

ε2 + z2

To obtain discrete forms of the update equations (8), (9),
(10) of Φ(x, y, t), w1(x, y, t), and w2(x, y, t), we use an im-
plicit finite-difference scheme for discretizing the divergence
operator, and then an iterative process until convergence to
obtain desired segmentation and degradation model [12]. The
principal steps of the algorithm are:
• Initialize Φ0(x, y), w0

1(x, y), and w0
2(x, y) at t = 0.

• Compute intensity distribution parameters Λ1,Λ2 using
(7).

• Solve (8), (9), and (10) in Φt(x, y), wt1(x, y), and
wt2(x, y) to obtain Φt+1(x, y), wt1(x, y) and wt2(x, y).

• Check for convergence; otherwise, repeat for iteration
= t+ 1.

III. EXPERIMENTAL VALIDATION

We tested the performance of the model on 6 brain MR
volumes (2 4, 4 8, 5 8, 6 10, 15 3, and 16 3) obtained
from the Internet Brain Segmentation Repository (IBSR)
20 normal subject dataset (Fig. 1). The 6 volumes are
specifically selected as they have high noise and inhomo-
geneity artifacts, and are considered difficult cases for tissue
segmentation in IBSR-20 dataset. We employ only real
MR datasets in this study as simulated MR datasets often
implicitly assume multiplicative image formation model in
construction and, therefore, similar performance is expected
as compared to methods that consider only the multiplicative
intensity inhomogeneity component. The proposed method
performed well and accurately estimated the multiplicative
and additive components of the intensity inhomogeneities as
shown in the 2nd and 3rd columns of Fig. 1. The 4th and
5th columns show the recovered image Ĩ after estimating the
degradation model and subsequent segmenting of the brain
tissue, respectively.

To illustrate the significance of including the additive com-
ponent w2 along with the multiplicative component w1, we
compared tissue segmentation results from proposed method
(5th column) with the results when using only the multi-
plicative component for intensity inhomogeneity correction
(6th column). Table I shows a quantitative comparison using
Jaccard Index (Tanimoto Index) as the evaluation metric for
calculating overlap between the obtained segmentation and
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Fig. 1: Results of the proposed approach showing (a) the original images with intensity inhomogeneities (1st column), (b)
the estimated multiplicative component (2nd column), (c) the estimated additive component (3rd column), (d) the recovered
image Ĩ (4th column), (e) tissue segmentation (5th column) using proposed model, and (f) tissue segmentation when only
multiplicative component is considered (6th column) in the image degradation model.

TABLE I: Significance of Modeling Additive Intensity Inho-
mogeneity

Method JWM JGM

Proposed Model 0.6708±0.0309 0.7523±0.0191

Only Multiplicative Model 0.5463±0.0356 0.7063±0.0195

No Inhomogeneity Correction 0.2780±0.1938 0.3487±0.1564

the ground truth segmentation for white matter (JWM ) and
gray matter (JGM ) tissue classes. We additionally compare
proposed method with the segmentation results when no
intensity inhomogeneity correction is performed to illustrate
the relative gain in segmentation performance. The results
suggest that including the additive component in the degra-
dation model significantly improves the intensity inhomo-
geneity correction (p < 0.01 assessed using Wilcoxon rank
sum test), thereby resulting in more accurate brain tissue seg-
mentation. Visual comparisons between segmentation results
in Fig. 1 show that the multiplicative component alone is
insufficient to accurately model high intensity inhomogeneity
regions (6th column) in MR images. The proposed method
on the other hand (5th column), uses both additive and
multiplicative components to more accurately account for the
intensity inhomogeneities.

IV. CONCLUSION

In this study, we have developed a variational level set
approach for intensity inhomogeneity correction in brain MR
images that combines the estimation of intensity inhomo-
geneities with tissue segmentation. Unlike the majority of
the existing methods for intensity inhomogeneity correction,
we develop a variation of a degradation model that includes
both multiplicative and additive intensity inhomogeneity
components. We illustrate the significance of the additive
component by showing improved tissue segmentation rela-
tive to segmentation using only the multiplicative intensity
inhomogeneity component. In the future, we plan to quanti-
tatively evaluate the effectiveness of the proposed model for
estimating intensity inhomogeneities in MR images.
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