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Abstract— We consider the problem of tracking white matter
fibers in high angular resolution diffusion imaging (HARDI)
data while simultaneously estimating the local fiber orientation
profile. Prior work showed that an unscented Kalman filter
(UKF) can be used for this problem, yet existing algorithms
employ parametric mixture models to represent water diffusion
and to define the state space. To address this restrictive model
dependency, we propose to extend the UKF to HARDI data
modeled by orientation distribution functions (ODFs), a more
generic diffusion model. We consider the spherical harmonic
representation of the HARDI signal as the state, enforce
nonnegativity of the ODFs, and perform tractography using the
directions at which the ODFs attain their peaks. In simulations,
our method outperforms filtered two-tensor tractography at
different levels of noise by achieving a reduction in mean
Chamfer error of 0.05 to 0.27 voxels; it also produced in vivo
fiber tracking that is consistent with the neuroanatomy.

I. INTRODUCTION

Quantitative characterization of the brain circuitry is an
important problem in neuroradiology as damage to this cir-
cuitry may indicate neurological disease. Diffusion magnetic
resonance imaging (DMRI) is presently the only available
noninvasive technique to investigate white matter (WM) archi-
tecture in vivo. DMRI produces images of biological tissues
by measuring the anisotropic diffusion of water molecules and
the WM fiber orientations can be inferred from the directions
of maximum diffusion. State-of-the-art DMRI techniques such
as high angular resolution diffusion imaging (HARDI) enables
the reconstruction of the orientation distribution function
(ODF) [1], [2], which offers improved accuracy in resolving
intra-voxel complexities over the diffusion tensor (DT) model
[3], currently the de facto standard for clinical applications.

Prior work on tractography often estimates a diffusion
model at each spatial location and then delineates the tracts
via deterministic or probabilistic methods (see [4]–[8] and
references therein). Yet, if tracking is considered as a causal
process (e.g., in common deterministic approaches), model
estimation and tractography can be unified in a process recast
within a causal filter, as demonstrated in [9]. More specifically,

*Work supported in part by NIH grants R01 EB008432, P41 RR008079
(NCRR), P41 EB015894 (NIBIB), P30 NS057091, P30 NS5076408 and the
Human Connectome Project (U54 MH091657) from the 16 NIH Institutes
and Centers that support the NIH Blueprint for Neuroscience Research.
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[9] proposes to use an unscented Kalman filter (UKF) for
which the parameters of a multi-tensor model, i.e., mixtures
of diffusion tensors, form the state space. By examining the
measured signal at a location, the filter recursively updates
the parameters of the local model, provides the covariance
of that estimate, and indicates the most consistent direction
for tracking. In theory, this strategy, known as “filtered multi-
tensor tractography,” is fast (since it avoids estimation at every
voxel) and robust to noise (due to the nature of filtering).

Filtered multi-tensor tractography [9] assumes an underly-
ing diffusion model (i.e., a rank-2 tensor) with fixed number
of mixtures. This results in a state space representation where
the state vector is the fusion of several elements (e.g., principal
eigenvectors-eigenvalues and mixture weights) with different
statistical properties. Thus, parameter tuning and preservation
of physically meaningful states during the evolution are vital
for robustness, as discussed in [10]. In this work, we propose
to extend the UKF framework to HARDI data modeled by
ODFs, a more generic and versatile representation of diffusion.
We consider the spherical harmonic representation of ODFs
as the state and enforce nonnegativity of the ODFs during the
evolution. We use mean shift clustering [11] on the 2-sphere
S2 to identify the directions at which the ODFs attain their
peaks and perform deterministic tractography. We evaluate
the performance of our method on synthetic and real data.

II. FILTERED ODF TRACTOGRAPHY

A. Diffusion Representation with Spherical Harmonics

DMRI quantifies the anisotropy of water diffusion by
measuring the HARDI signal attenuation S along N different
gradient directions {(θn, φn)}Nn=1 ⊂ S2. The signal is mostly
attenuated in regions where WM tracts are oriented along a
given direction. Let S0 denote the baseline signal with no
diffusion sensitization, and let Sn be the HARDI signal in the
gradient direction (θn, φn). To represent the local diffusion,
we consider the single shell Q-ball imaging formulation in
[2], where the ODF in the spatial direction (ϑ, ϕ) is given by

p(ϑ, ϕ) =
1

4π
+

1

16π2
FRT
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Here, FRT is the Funk-Radon transform and ∇2
b is the

Laplace-Beltrami operator on S2, which is independent of
the radial component. Since spherical harmonics (SHs) are
eigenfunctions of the Laplace-Beltrami operator and the Funk-
Radon transform, and S is assumed real and antipodally
symmetric, one can use the approximation
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where ct ∈ R is the SH coefficient associated with the
modified SH function

Yt =


√
2Re{Y |m|l } if − l ≤ m < 0,

Y m
l if m = 0,√
2(−1)m+1Im{Y m

l } if 0 < m ≤ l.
(3)

There are T = (L+1)(L+2)/2 such functions for the SH
basis of degree L with indices t(l,m)=(l2+ l + 2)/2 +m,
where l = 0, 2, . . . , L, |m| ≤ l, and Re{Y m

l } and Im{Y m
l }

are respectively the real and imaginary parts of the standard
SH basis function Y m

l : S2 → C of degree l and order m
[12]. In this work, we consider the SH basis of degree L=4
(i.e., with T =15), and write (2) in vector form as

sn
.
=ln
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−ln

(Sn

S0

))
≈
[
Y1(θn, φn), . . . , Y15(θn, φn)

]
c. (4)

Once the least-squares solution of (4) for the unknown c ∈
RT is found, a discrete representation of the ODF can be
reconstructed as described in [2], [13]. The method in [13]
also enforces the estimated ODFs to be nonnegative and it is
used, in this work, to initialize the proposed algorithm.

B. WM Tractography using the Unscented Kalman Filter

The main idea in filtered tractography is to estimate and
recursively update the diffusion model given the signal at a
spatial location and trace the fiber by propagating in the most
consistent direction. If one uses a state-space filter, e.g., the
Kalman filter, for tractography, the four components of this
filter are the system state x (diffusion model), the state transi-
tion function, f (to predict how the diffusion model changes
during fiber tracking), the observation function, h (to predict
the signal for a particular state), and the measurement y (the
acquired HARDI signal). We consider the SH coefficient
vector c as the state, i.e., x = c =

[
c1, c2, . . . , cT

]>
, and

identity dynamics for the state transition f assuming that the
diffusion profile does not change drastically in the vicinity of
a location of interest (spatial regularity). The measurement y
is the HARDI signal S at that location, and the observation
h is the reconstruction of the signal from (4).

Since the signal reconstruction in (2) is nonlinear, the
unscented Kalman filter (UKF) is a more appropriate choice
for filtered tractography. The UKF uses a deterministic
sampling technique known as the unscented transform (UT),
which calculates the statistics (mean and covariance) of a
random variable undergoing a nonlinear transformation. The
filter first uses the state transition model to predict the next
state and observation, and then uses the measurement to
update the state estimate. One iteration of this recursive
algorithm can be outlined as follows. Let xk ∈ RT and
Pk ∈ RT×T be the estimated mean and covariance matrix of
the current state at discrete time k. In the prediction stage, a
set Xk of 2T + 1 sigma points {χi} ⊂ RT with weights

w0 =
κ

T+κ
, wi = wi+T =

1

2(T+κ)
,

are spread around xk such that χ0 = xk and

χi = xk+
[√

(T+κ)Pk

]
i
, χi+T = xk−

[√
(T+κ)Pk

]
i
.

Here, [A]i denotes the i-th column of the matrix A and
κ is a scaling parameter set to 0.01. Next, the predicted
sample set of states Xk+1|k is obtained by propagating
Xk through the state transition function, i.e., Xk+1|k =
{f(χi)} = {χ̂i}. The resulting set is used to calculate
the predicted system mean state x̂k+1|k =

∑
i wiχ̂i, and

covariance Pxx =
∑

i wi(χ̂i − x̂k+1|k)(χ̂i − x̂k+1|k)
> +

Qc, where Qc ∈ RT×T is the covariance of the process
noise. Then the predicted set of observations is obtained
as Yk+1|k = {h(χ̂i)} = {γi}. These observations are used
to calculate the mean ŷk+1|k =

∑
i wiγ̂i, and covariance

Pyy =
∑

i wi(γ̂i − ŷk+1|k)(γ̂i − ŷk+1|k)
> + Rs, where

Rs ∈ RN×N is the covariance of the measurement noise.
Finally, the Kalman gain K = PxyP

−1
yy ∈ RT×N , with

Pxy =
∑

i wi(χ̂i − x̂k+1|k)(γ̂i − ŷk+1|k)
> being the cross

correlation between the state and observation, is used to
correct our prediction and obtain the updated state mean
xk+1 and covariance Pk+1,

xk+1 = x̂k+1|k +K(yt − ŷk+1|k), (5)

Pk+1 = Pxx −KPyyK
>. (6)

C. Summary and Implementation Details

1) Outline of the Algorithm: The proposed algorithm is
initialized, at user- (or mask image-) specified seed points, by
estimating the SH representation of the HARDI signal and
reconstructing the ODFs as described in [13] and summarized
in §II-A. For each seed point on the fiber to be tracked, the
resulting SH coefficient vector c is taken as the initial state
x0 and the number and locations of the mode(s) of the ODF
are identified via weighted spherical mean shift clustering
[11]. The resulting modes represent the candidate directions
to be followed at the current location. At the k-th iteration,
we predict the new state as xk+1|k = f(xk) = xk, use the
observation h : RT → RN of the form

Sn = S0 exp
(
− exp

(∑
t

ctYt(θn, φn)
))
, (7)

for n = 1, 2, . . . , N , along with the measured signal interpo-
lated at the current spatial location, and compute the new state
xk+1. This estimate is used to reconstruct the ODF whose
modes (directions to be followed at k + 1) are subsequently
identified. We use second-order Runge-Kutta path integration
strategy to propagate forward in the direction consistent with
the previous direction of propagation and repeat this procedure
until user-defined termination criteria (e.g., high curvature,
maximum length, low generalized fractional anisotropy) are
met. To enforce nonnegativity of the estimated ODFs (at the
initialization and at the end of each iteration), we employ the
constrained optimization strategy proposed in [13].

2) Parameter Selection: The UKF framework requires a
few parameters to be tuned, namely the covariance matrices
of the process noise and measurement noise, Qc and Rs,
respectively. We assume that these matrices are diagonal with
entries qc = 0.01 and rs = 0.02, respectively, but at the same
time we observe that the algorithm is robust for different (yet
comparable) values of these parameters.
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III. VALIDATION AND DISCUSSIONS

A. Experiments on Synthetic Data

Experiments on synthetic data evaluate the sensitivity of our
method to noise and compare its performance to that of the
filtered two-tensor tractography method with the parameter
settings given in [9]. We generate a synthetic dataset com-
prising diffusion weighted images of 60 fiber configurations.
Each configuration has two randomly generated fibers that
intersect. The centerline of each fiber is formed by fitting
cubic splines through at most three randomly selected points
in a 30 × 30 lattice. As a result, we obtain configurations
at different levels of complexity, which include intersecting
linear or curved fibers (see Fig. 1(a)). We use the two-tensor
model in [12], where the HARDI signals {Sn}Nn=1 at N = 81
gradient directions, with S0 = 1 and b= 2,000 s/mm2, are
simulated to represent an isotropic background and ODFs of 1
or 2 fibers according to the shape of a fiber centerline. Noisy
signals are generated by adding Rician (complex Gaussian)
noise with zero mean and standard deviation σ = S0/ζ,
where ζ is the signal-to-noise ratio (SNR).

Accuracy in tracking is quantified by the spatial tracking er-
ror (in voxels) computed as the symmetrized Chamfer distance
ε(Xe,Xt) between the estimated tract Xe = (xe1, x

e
2, . . . ) and

the ground truth centerline Xt = (xt1, x
t
2, . . . ), i.e.,

ε(Xe,Xt) =
1

2

(
dChamfer(X

e,Xt) + dChamfer(X
t,Xe)

)
, (8)

with dChamfer(X
t,Xe)=

1

|Xt|
∑

xt
i∈Xt

min
xe
j∈Xe

‖xti−xej‖2.

We select four seed points from Xt of each fiber and identify
the pathway that gives the minimum ε as Xe. Notice that the
symmetrized Chamfer distance can be very large if the filter,
initiated at one fiber of a configuration, does not capture the
underlying diffusion profile around the fiber intersection and
traces the other fiber. For completeness, we also find these
“misidentified configurations” and report their percentage.

Table I shows the mean and standard deviation of ε for
the aforementioned methods as well as the percentages of
the misidentified configurations at different SNRs. Although
the spatial tracking errors seem to be comparable as both
methods achieve sub-voxel accuracy, our ODF-based method
outperforms filtered two-tensor tractography at all levels of
SNR by achieving a reduction in mean ε of 0.05 to 0.27 voxels.
Similarly, the proposed method misidentifies a smaller number
of configurations, i.e., at most 7% of the configurations, as
opposed to 7%-20% when SNR 6= 5, and 10% versus 28%
when SNR = 5. These results demonstrate that by removing
the dependency of the UKF on a more restrictive diffusion
model, it is possible to resolve higher degrees of complexity
and track more fibers with increased accuracy.

Fig. 1(b) shows four fiber configurations along with the true
centerlines Xt (shown in red) and the estimated centerlines
Xe (shown in blue and black) when SNR = 10. Both methods
yield accurate results for the first two configurations, whereas
for the last two configurations our method outperforms filtered
two-tensor tractography by resolving the fiber crossings.

B. Experiments on Real Data

We test the proposed method on a human brain dataset
containing structural, functional, and diffusion MR images
provided for the Pittsburgh Brain Connectivity Challenge
(PBCC Spring 2009).1 The diffusion weighted images were
acquired with a 128×128 image matrix, a spatial resolution
of 2 mm, 68 slices each with a thickness of 2 mm, and a
diffusion sensitization at b = 1,500 s/mm2 applied along a
set of 256 gradient directions with 29 baseline images.

We consider a region of interest (ROI) containing structures
such as the corpus callosum (CC), cingulum (CG), corona
radiata (CR) and superior longitudinal fasciculus (SLF). The
integrity of these tracts, shown in Fig. 2(a) on a white matter
atlas [14], plays a critical role in several neurological disorders.
We use the fractional anisotropy image (provided in the
dataset) as a mask for selecting locations with high anisotropy
as starting points for our method. Fig. 2(b) shows the resulting
tracts, which are consistent with the neuroanatomy. More
specifically, one can see the anterior and posterior portions,
i.e., the genu and the splenium, of the CC as well as the
body connecting the two hemispheres. In addition, the CG
bundle and parts of the CR and SLF are correctly delineated.
These tracts pass through several regions including the
supplementary motor area (SMA) and the occipital lobe (OL),
which are placed in Fig. 2(b) by registering the automated
anatomical labeling (AAL) atlas [15] to the structural image.

IV. CONCLUSION AND FUTURE WORK

In this work, we extended the UKF framework, which
was shown to be successful for simultaneous diffusion model
estimation and tractography, to HARDI data characterized by
ODFs. We considered the spherical harmonic representation
of the HARDI signal as the state, enforced nonnegativity of
the ODFs, and performed tractography using the directions at
which the ODFs attain their peaks. We further reduced model
dependency by automatically identifying the number and
locations of the modes of the ODFs. Experiments demonstrate
the advantages of our approach over filtered two-tensor
tractography in terms of accuracy in tracking under noise and
identification of fiber crossings. We conjecture that the UKF
framework may also improve tracking speed with an accuracy
comparable to those of the classical methods decoupling esti-
mation and tractography. Future work includes investigating
other state space representations that will formalize the UKF
into an intrinsic (manifold-constrained) formulation [16], as
discussed in [10] for the space of diffusion tensors.
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