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Abstract— The under-sampling trajectory design plays a key 
role in compressed sensing MRI. The traditional design scheme 
using probability density function (PDF) is based up 
observation on energy distribution in k-space rather than 
systematic optimization, which results in non-deterministic 
trajectory even with a fixed PDF. Guidance-based method like 
Bayesian inference scheme is always bothered with high 
computational complexity on entropy. In this paper, we study 
how to adaptively design an under-sampling trajectory in the 
context of CS with systematic optimization and small 
complexity. Simulation results conducted on images from 
different slices and dynamic sequence demonstrate the 
effectiveness of the proposed method by comparing the designed 
trajectory with those by traditional method. 

I. INTRODUCTION 

Compressed sensing, as a new signal sampling and 
recovery framework, has been applied to reduce the number of 
required data in MRI. It can break out the restriction of 
Nyquist sampling theorem and reconstruct MR images from 
significantly fewer measurements, provided these images are 
sparse in transform domain. The quality of image 
reconstruction in CS-MRI highly depends on the sparsifying 
transform, under-sampling trajectory and non-linear 
reconstruction method. A large amount of work has been done 
for sparsifying transform and reconstruction method. 
However, there is no too much relevant progress for trajectory 
design scheme.  

Fig.1 shows the importance using under-sampling 
trajectory design for CS-MRI. We can see apparent ringing 
artifacts (marked by red arrow) in reconstructed image with 
uniform sampling (Fig.1 (a)) and no observable artifacts with 
random  sampling (Fig.1 (b)).  

An adaptive trajectory design scheme for CS-MRI should 
be evaluated in the following aspects: (1) the design scheme 
should be reconstruction-guidance-based not 
observation-based. (2) in the optimization procedure, criterion 
could effectively reveal the underlying structure of k-space 
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and computation complexity should be low. (3) the designed 
trajectory should possess incoherence property, reasonable 
distribution in low and high frequency domain and robust 
transplantation from training set to test set. The 
variable-density random trajectory [1] based on probability 
density function is the most common design scheme in 
CS-MRI. However, this method can not give deterministic 
design even with a fixed PDF, thus depends on repetitive 
experiments to obtain the best reconstruction. Most of the 
modifications on this method focus on reducing coherence 
artifacts [2-5] and do not provide systematic design guidance. 
Among the systematic-optimization algorithms, Seeger et al. 
[6] phrased trajectory optimization as a Bayesian experimental 
design problem with the minimization of posterior. However, 
only one trajectory with largest entropy was appended from 
candidate set in each optimization step and the computation of 
entropy suffered large matrix decomposition, both leading to 
low optimization efficiency and high computational 
complexity. Ravisshankar et al. [7] proposed an adaptive 
under-sampling design to redistribute the phase encodings in 
each optimization step, based on k-space errors between the 
reconstructed and full-sampled data. However, this method 
may not be effective when the initial trajectory included 
enough central phase encodings. 

In this paper, we propose a new trajectory design scheme 
with deterministic result and low computational complexity. 
In order to avoid the dependence on initial trajectory like [7], 
the initial under-sampling trajectory only contain the phase 
encodings on the central region of k-space. K-space errors 
used in [7] substitute Bayesian posterior entropy used in [6] as 
the criterion in each optimization step, due to low 
computational complexity. Besides, two different 
optimization strategies considering the characteristics of 
coarse and fine features are implemented for low-frequency 
and high-frequency domain, respectively. The simulation 
results demonstrate the superiority of the trajectory using 
proposed method comparing to conventional design.  
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Figure 1. Reconstructed images using two trajectory design scheme. (a) 
shows the reconstructed result with uniform sampling trajectory (b) shows 
the reconstructed result with random sampling trajectory.  

II. PROPOSED METHOD 

We take the framework in [6] and the criterion in [7] for 
reference. Our algorithm starts with a fully sampled training 
data and a fixed under-sampling factor to get the designed 
trajectory. The initial trajectory only contains phase encodings 
concentrating on the central k-space. All the remainders are in 
the candidate set. Then the image is reconstructed from the 
initial under-sampling trajectory using CS and then 
transformed to k-space by Discrete Fourier transform (DFT), 
producing reconstructed k-space data.  

As we know, coarse and fine features are related to the 
phase encodings on the central and marginal part of k-space, 
respectively. Besides, most of the image energy tightly 
concentrates on the low-frequency part, playing a dominating 
role on image reconstruction. In [6],  trajectory was designed 
through one-by-one appending scheme without considering 
diverse importance of phase encodings in low and high 
frequency domain, leading to low optimization efficiency. 
Therefore, in our method, different strategies are applied for 
trajectory design in low and high frequency domain 
respectively.  

K-space error, defined as the root-mean-square error (rms) 
between the reconstructed and reference k-space data, not only 
possesses low computation complexity but also reveals the 
importance of every single phase encoding. From Fig.2 (a), we 
can see that the distribution of k-space errors of candidate 
phase encodings is similar to Gaussian distribution, where the 
k-space error of phase encodings in low-frequency is 
extremely larger than the ones in high-frequency domain. 
Therefore, in the low-frequency domain, phase encodings in 
the candidate set can be batch-optimized. Please note, the 
small region nearby the central phase encoding were fully 
sampled and the k-space errors are zero. Inspired by [8,9] 
where multiple non-zero locations are detected in one step, 
phase encoding lines corresponding to top N k-space errors 
are simultaneously added into the designed trajectory. This 
process will be ended up when the difference of two 
successive parameter � (||�n+1-�n||, n: optimization step), which 
reveals the reconstruction of coarse features is lower than a 
given threshold. The expression of � is as follows, 

1 2 1 2
( , )

ˆ ˆ( , )
ˆ ˆ ˆ ˆ( , ) ( , )

( , ) ( , ) ( , )
i j

s s s s

s s s s s s s s

s s s i j s i j

�
� � � �

��� � � � 	� � �

�� � 	
��

�
                 (1) 

where s  and ŝ is the original and reconstructed image 
respectively. s is the mean value of  s . 

Fig.2 (b) demonstrates the k-space error distribution after 
the optimization in low frequency domain. We can observe 
that k-space errors of candidate phase encodings prominently 
decrease, locations close to the central still possess large 
k-space errors and apparently sectionalized fluctuation 
appears in the marginal part. If phase encodings corresponding 

to next top N k-space errors after low-frequency domain 
optimization are still appended into designed set, the final 
trajectory will concentrate on low frequency domain, leading 
to the loss of fine features and Gibbs ringing artifacts. 
Consequently, phase encodings out of the low-frequency 
domain are cell-appended. Similar to [1], the under-sampling 
density is also different for locations close to and far away 
from low frequency domain. A threshold is set to distinguish 
the phase encodings in high frequency domain. Phase 
encodings with k-space errors larger than the threshold are 
equally partitioned to cells with sampling density as J1 
(indicated by the black rectangle in Fig.2 (b)) and the 
reminders are partitioned to cells with sampling density as J2 
(indicated by the red rectangle in Fig.2 (b)) (J1 > J2). Only one 
phase encoding corresponding to the highest k-space error 
from each cell is appended into the designed trajectory. The 
whole optimization process will be ended up by achieving to a 
fixed under-sampling factor. Algorithm 1 shows the 
pseudo-code of our trajectory design scheme. 
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Figure 2. Normalized distribution of k-space error (From top to bottom row: 
brain and cardiac). The zero and non-zero k-space errors are corresponding to 
sampled and candidate phase encodings. (a) and (b) are k-space error before 
and after optimization in low-frequency domain. 
 

Algorithm 1 Trajectory design optimization algorithm 
Require: Candidate set C of phase encodings. Initial design X,   
Reconstruct image y corresponding to X 
Repeat 

(1) Transform y to k-space using DFT 
(2) Compute k-space error for all candidate phase encodings 

if  ||�n+1-�n|| is larger than a given threshold 
(3) Batch-optimization 

In the low-frequency domain, append the winning candidate 
phase encodings with top N k-space errors into X and remove 
them from C. Reconstruct image y corresponding to new design 
X*. 

else 
(4) Cell-optimization 

In the high-frequency domain, the candidate locations close to 
and far away from low-frequency are partioned into cells with 
sampling density as J1 and J2 (J1 > J2), respectively. One 
winning candidate phase encoding corresponding to the highest 
k-space error from each cell is appended into X. Reconstruct 
image y corresponding to new design X*. 

Until fixed under-sampling ratio is achieved 
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Figure 3. (a), (b) and (c) are reconstructions from initial, after low-frequency 
optimization and final trajectory. (cardiac image is the zoomed region from 
original image) (d) is the final designed trajectory. Reduction factor of 2.5 and 
4 are used from top to bottom . 

III. SIMULATION RESULTS 

The proposed method was validated on brain and cardiac 
images, all of size 256×256. The initial trajectory contains 5 
phase encodings in the central region of k-space and the 
remainder 251 ones are in the candidate set. The net 
under-sampling factor is set as 2.5 for brain and 4 for cardiac, 
respectively. Split Bregman [10] is used to reconstruct images. 
The difference image between original and reconstructed 
image is used to evaluate reconstruction quality.  

All methods were implemented in MATLAB (Mathworks, 
Natick, MA) with 4GB RAM and 2.66 GHZ CPU. Fig.3 
shows the reconstructions using initial (Fig.3(a)), after 
low-frequency optimization (Fig.3(b)) and final designed 
trajectory (Fig.3(c)). We can see the final reconstructions only 
show negligible artifacts with 2/5 k-space data for brain and 
1/4 for cardiac using designed trajectory. And the whole 
optimization process only costs 2 minutes.  

For each kind of image, the transplantation property of the 
designed trajectory is verified with two k-space data from 
different slices, showing modest difference in fine features. 
These two k-space data constitute cross validation set and act 
as the training and test data crossly. It means we can 
reconstruct image from one k-space data using the trajectory 
designed from another slice. The variation reflected in 
reconstructed image  and corresponding difference images 
(Fig.4) is subtle using two different designed trajectory from 
the training and testing data, respectively. Therefore, the 
optimized trajectory can be effectively transplanted from 
training to test image crossly, which is very crucial for 
dynamic imaging. 
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Figure 4. Reconstructions with the optimized trajectory by cross validation. 
(a) and (c) are images reconstructed by the designed trajectory from their own 
k-space. (b) and (d) are images reconstructed by the designed trajectory from 
another slice.   
 

Our trajectory is compared with design scheme in [1]: the 
variable-density trajectory (vd) design based on PDF. Please 
note, the final result of “vd” shown here is the average result 
with four repetitive experiments and the used trajectory in our 
method is not designed from its own design-space but from 
another slice. Fig.5 demonstrates that the reconstruction 
results have apparent difference in different experimental 
steps with fixed PDF. From Fig.6, the reconstructions with 
designed trajectory using our method not only provide stable 
result than those with variable-density trajectory but also 
exhibit better image quality.  
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Figure 5. Evaluation of the designed trajectory with variable-density method 
in four repetitive experiments (1~4 indicates every single experiment). The 
first and third row are difference images. The second and four rows are 
corresponding trajectory design generated by VD design scheme in every 
experimental step. 
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Figure 6. Reconstructed images using two trajectory design scheme. (a) 
shows the reconstructed result with variable-density trajectory (b) shows the 
reconstructed result with our trajectory  

IV. CONCLUSION 
In this paper, an under-sampling trajectory design scheme 

is proposed for CS-MRI. As the criterion, k-space error can 
effectively reveals the underlying k-space structure with low 
calculation complexity. The optimization process is 
partitioned into two parts with the consideration of distinct 
characteristics of phase encodings in low and high frequency 
domain. In low frequency domain, multiple-appending 
scheme greatly accelerates the optimization speed. In high 
frequency domain, cell-optimization scheme preserves the 
incoherence property and fine details. The simulation results 
in images from different slices and dynamic sequence show 
that the proposed trajectory design scheme is able to suppress 
more noise and preserve more details than the 
variable-density trajectory design and robust in transplanting 
from training set to test set. Besides, this design scheme can 
also be extended to non-Cartesian sampling design.  
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