
The detection of Freezing of Gait in Parkinson’s disease patients using

EEG signals based on Wavelet Decomposition

A.M. Ardi Handojoseno, James M. Shine, Tuan N. Nguyen, Member, IEEE,

Yvonne Tran, Simon J.G. Lewis, Hung T. Nguyen, Senior Member, IEEE

Abstract— Freezing of Gait (FOG) is one of the most dis-
abling gait disturbances of Parkinson’s disease (PD). The
experience has often been described as ”feeling like their feet
have been glued to the floor while trying to walk” and as such
it is a common cause of falling in PD patients. In this paper,
EEG subbands Wavelet Energy and Total Wavelet Entropy
were extracted using the multiresolution decomposition of EEG
signal based on the Discrete Wavelet Transform and were used
to analyze the dynamics in the EEG during freezing. The
Back Propagation Neural Network classifier has the ability to
identify the onset of freezing of PD patients during walking
using these features with average values of accuracy, sensitivity
and specificity are around 75 %. This results have proved the
feasibility of utilized EEG in future treatment of FOG.

I. INTRODUCTION

After Alzheimer’s disease (AD), Parkinson’s disease (PD)

is the second most prevalent neurodegenerative disorder

which increases with age [1]. It is a slowly progressive

neurologic disorder caused by degeneration of dopamine

and other sub-cortical neurons in the substantia nigra, an

area in the basal ganglia of the brain. Dopamine is one

of neurotransmitters which help transmit a message to the

striatum in the central area of the brain to initiate and control

movement and balance.

The freezing of gait (FOG) is defined as a ’brief, episodic

absence or marker reduction of forward progression of the

feet despite the intention to walk’ [2]. It was found to

be the most distressing symptom of PD. It is a common

cause of fall, interferes with daily activities, makes people

with Parkinson’s lose confidence in walking and significantly

impairs quality of life [3]. It is one of the least understood

symptoms in Parkinson’s disease and empirical treatments

are of poor efficacy, making it an important clinical problem

[2], [4].

In recent years, a few attempts have been reported on

the detection and prediction of FOG. Since leg oscillations

are so common in episodes of freezing, they are used as

a sign of the freezing’s onset and as an indication that
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special treatment to ’un-freeze’ needs to be done immediately

[2], [5]. Two major different approaches are based on char-

acterizing freezing of gait using spatiotemporal kinematic

parameter of gait (an increased cadence, decreased stride

length, and decreased angular excursion of leg joints) and

based on frequency analysis of leg movement [6]. Some

works have also been reported using an Electromyographic

(EMG) pattern to detect the onset of FOG [7], [8]. A wear-

able device using on-body acceleration sensors to measure

the patients’ movement has been developed [9]. Functional

MRI and virtual reality-based walking tasks were utilized in

recent research to identify direct neural correlate underlying

freezing behavior in a patient with PD [4].

Electroencephalogram (EEG) has been used to identify

and analyze brain dysfunctions including Alzheimer Disease

(AD) [10], Epilepsy [11], monitoring cerebral injury and

recovery [12] and Parkinson’s Disease [13]. To the best of

our knowledge, there is no implementation of EEG for FOG

detection except in a preliminary experiment [14] . In this

paper, we present a methods for detection of FOG using EEG

signals based on Wavelet decomposition and patterns recog-

nition techniques. The propose features, subband Wavelet

Energy and Total Wavelet Entropy, were chosen as they were

reported has significant advantages in detecting changes in

a short segment of EEG signals [15]. Complemented with

the Multilayer Perceptron Neural Network, they showed a

significant change in the brain signals before freezing.

II. METHODS

A. Experimental Setup and Data Acquisition

Twenty-six patients (age 69.8 ± 8.41) with idiopathic

Parkinson’s disease with significant FOG were recruited from

the Parkinson’s Disease Research Clinic at the Brain and

Mind Research Institute, University of Sydney. All patients

underwent a structured series of video-recorded timed up-

and-go tasks (TUG). Freezing episodes were defined as the

paroxysmal cessation of a patient’s footsteps during a TUG

task and were analyzed by two independent raters.

The EEG signals were obtained using a-4 channel wireless

EEG system developed by UTS with sensors are located at

occipital one (O1-primary visual receiving area), parietal four

(P4-navigational movement area), central zero (Cz-primary

motor area) and frontal zero (Fz- supplementary motor area).

Only the differential channels O1-T4 and P4-T3 were used

in this study. Raw data were acquired at sampling rate of 500

Hz in 1 to 2 hours periods for each patient and an epoch of 1

second from individual freezing events was taken. Afterward
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EEGs data were divided into three groups. The first group

was recorded prior to an onset of Freezing (normal walking).

The second group is referred to a period of onset of FOG

(5 seconds before freezing). The third group contains the

EEG signals during the FOG. These data are then processed

in three stages: preprocessing stage, feature extraction and

selection stage, and classification stage.

B. Data Preprocessing

Based on visual inspection on raw data, data from 10

patients were selected and 40 samples of data from each

chosen subject were taken for each group (i.e.1200 sam-

ples). Afterwards, EEGs were filtered using band-pass and

band-stop butterworth IIR filters in order to eliminate low

frequency noise and high frequency noise (BPF 0.5-60 Hz)

and cancel out the 50 Hz line frequency (BSF 50 Hz). Then,

a simple threshold filter was applied for further eliminated

noise, based on comparison of the signal data with its

neighbor and the standard deviation of the data.

C. Feature Extraction and Selection

Compared to a traditional Fourier Transform, Wavelet

Transform has the advantages of time-frequency localization,

multiscale zooming, and multirate filtering for detecting and

characterizing transients since its building block functions

are adjustable and adaptable [16]. It gives an excellent feature

extraction from non-stationary signals such as EEGs. In this

research, the discrete wavelet transforms (DWT) based on

dyadic scales and positions is used. The DWT is defined as,

DWT ( j,k) =
1

√

|2 j|

∫ ∞

−∞
x(t)ψ(

t − 2 jk

2 j
)dt (1)

where 2 j and k2 j are the scale (reciprocal of frequency) and

translation (time localization) respectively.

In the procedure of multiresolution decomposition of sig-

nal x(t) based on the DWT, each signal is simultaneously

passed through a complementary high pass filter (HPF) and

low pass filter (LPF) and is down sampled by 2. The outputs

of the high pass and low pass filters provide the detail Dj

with the frequency band [fm/2 : fm] and the approximation

Aj with the frequency band [0 : fm/2], respectively. Frequency

subbands are related to the sampling frequency of the original

signal fs in which fm=fs/2(l+1) where l is the level of

decomposition.

The Wavelet decomposition for a given EEG signal x(t)
that shows the DWT with their coefficients could be written

x(t) =
∞

∑
k=−∞

A(k)ϕk(t)+
∞

∑
j=0

∞

∑
k=−∞

D( j,k)ψ j,k(t) (2)

The EEG signals then can be considered as a superposition

of different structures occurring on different time-scales at

different times. For EEG sampled at 500 Hz, a six level

decomposition results in a good match to the standard clinical

EEG subbands: delta (A6: 0-3.9 Hz), theta (D6: 3.9-7.8

Hz), alpha (D5: 7.8-15.6 Hz), beta (D4: 15.6-31.3 Hz),

gamma (D3: 31.3-62.5 Hz). Two of the highest resolution
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Fig. 1. Wavelet decomposition of EEG into five EEG subbands

components are noises: D2 (62.5-125 Hz) and D1 (125-250

Hz). Daubechies (db4) wavelets are selected as the wavelet

function due to their smoothing feature which is suitable

for detecting changes of the EEG signals. Reconstruction of

these signals into five constituent EEG subbands is depicted

in Fig.1.

The energy in these components and their wavelet co-

efficients are related to the energy of the original signal,

according to Parseval’s Theorm. This partition at different

time (k) and in scale (j=1,....,l) can be presented as:

ED j =
N

∑
k=1

|D j,k|
2, j = 1, ....l (3)

EAl =
N

∑
k=1

|A j,k|
2 (4)

where N is the number of the coefficients of the detail or

approximation at each decomposition level.

The energy distribution diagrams of EEG subbands at

channel O1 and P4 of three groups of signal: a) normal; b)

onset; c) freezing shows that EEG wavelet energy increases

before freezing in all subbands (Fig. 2). In comparison with

the EEG signal from normal stage, subbands alpha, beta,

and gamma of freezing stage have a bigger percentage of

the values of the total energy of the signal.

Total energy of the wavelet coefficients will be

Etot = EAl +ED j (5)

Normalization values of each subbands wavelet energy

(WE) results in the Relative Wavelet Energy (RWE)

p j =
E j

Etot
(6)

where E j refers to ED j and EAl . Further analysis on the

distribution energy using the Shannon information entropy

theory reveals the shift of the degree of complexity of the

signal. Based on distribution of the RWE, the total wavelet

entropy (TWE) is defined as [15]:
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Fig. 2. Group means of wavelet energy of EEG subbands at O1 and P4

H(x) =−∑
j

p j,klogp j,k (7)

Comparison of the TWE in three groups data (Fig.3) sug-

gests that EEG activity in freezing stage is less regular (more

complex) than in a normal condition in the occipital and

parietal regions. Significant changes happen even between

normal and onset with channel P4 appears as a stronger

indicator of changing than channel O1.

Non-parametric statistical analysis the Wilcoxon Sum

Rank Test was implemented to evaluate the statistical dif-

ferences between those features of three groups of data and

to select the significant one that differentiates those groups

of data.

D. Classification

Based on the feature selection and their combination

possibilities for classification, different Neural Networks

with different set of inputs are developed. A three layer

Back Propagation Neural Networks (BP-NN) is used, with

56% of the data trained by Levenberg Marquardt algoritm

(25% and 19% of the data are used for validation and

test, respectively). Tangent Sigmoid is chosen for activation

function and training process is stopped by the validation

set. The number of hidden nodes is selected between 4

to 7 depending on the number of inputs dimension and

the number of training pairs. Twenty separated training and

testing were done for each feature. Mean, standard deviation

and the best result were recorded for further analysis.

III. RESULTS AND DISCUSSION

Statistical analysis indicates that group Normal differs

from the other two groups (Onset and Freezing) at its Wavelet

Energy subbands delta, theta, and alpha as well as their

TWE (Table I). The higher subbands Wavelet Energy (beta

and gamma) in channel O1 do not appear to be significantly

different from each other as their confidence level less than
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Fig. 3. The Box Plot of the TWE of three groups data of PD patients

99% (p-value >0.01). However, all subbands wavelet energy

at channel P4 are statistically different, suggesting this region

has been deeply affected by the FOG. The degree of order

of wavelet energy significantly increased from onset stage

to freezing stage at occipital region (O1) in contrast with

continuous decreasing regularity at parietal region (P4) as the

general trend of dynamic from normal to freezing. This trend

was contrary to the pattern of EEG signal of AD and epileptic

patients during seizure which becomes more organized and

has less complexity and chaoticity [10], [11].

While the subband delta is likely to be affected by noise,

it is observed that the theta subband wavelet energy shows

the most considerable difference between all three groups.

It is consistent with a previous study of spectral analysis

using Fast Fourier Transform on the same data in which

theta appears as the most significant EEG subband affected

by freezing [14]. However, contrary to Palmer’s study [17]

in which beta band EEG is found to be more important for

dual task performance in PD which may lead to FOG, in

this study alpha has a more significant contribution to task

performance than beta.

For classification, four features of channel O1 were taken

as they have a significantly high confidence level beyond

criterium (p-value <0.01): WE delta, WE theta, WE alpha

and TWE. All EEG subbands WE and TWE of channel P4

were implemented as inputs. Experiments were conducted

for each location of brain (O1, P4) and combination of it.

The Back Propagation Neural Networks using Levenberg

Marquardt algoritm for training shows a promising result in

testing set as is indicated in Table II. Using only channel P4

has already given more than 76.57 % correct in classifying

normal-onset. Performance was slightly increased in accu-

racy and specificity when it was combined with channel O1

to differentiate between normal and freezing. The success

rate of differentiate between normal and onset (76.6 ± 3.4)

is slightly higher than between normal and freezing (73.88

± 79.6) implied that the neurological process of freezing in

the brain started in 5 second periods before it appeared as

freezing of gait. Compared to other works in different brain

diseases such as AD and epilepsy which obtain accuracy up

to 87.1 % [11] and sensitivity on average 83 % [18], clearly

more research needs to be done to increase the performance

of the system.

71



TABLE I

STATISTICAL CORRELATION ANALYSIS BETWEEN 3 DIFFERENT STAGES OF PD’S PATIENTS

Channel- mean±std p-value
Feature Normal (N) Onset (O) Freezing (F) N-O N-F O-F

O1-WE δ 16939.779±26347.684 20781.927±28844.102 12840.539±21509.292 0.002 0.016 ≤ 0.001
O1-WE θ 1250.205±1496.056 2824.346±4010.260 1593.678±1997.817 ≤0.001 ≤0.001 ≤0.001
O1-WE α 1761.528±1828.380 2399.470 ±2168.370 2105.513±2200.471 ≤0.001 0.004 0.002
O1-WE β 2054.270±2776.284 2193.293±2729.281 2075.393±2411.743 0.028 0.174 0.290
O1-WE γ 2250.084±3129.022 2543.499 ±4003.021 2659.319±4233.292 0.339 0.083 0.373
O1-TWE 0.932±0.395 1.070±0.322 0.976± 0.353 ≤0.001 ≤0.001 ≤0.001
P4-WE δ 14132.911±20644.905 25843.544±32521.796 15637.085±18483.045 ≤0.001 ≤0.001 ≤0.001
P4-WE θ 1319.528±1366.631 3593.649±3857.009 2657.609±2045.397 ≤0.001 ≤0.001 0.002
P4-WE α 2622.983±2874.563 4546.447±3056.553 5271.596±3766.857 ≤0.001 ≤0.001 0.013
P4-WE β 2694.404±2835.144 4038.314±3000.283 4622.378±3257.461 ≤0.001 ≤0.001 0.007
P4-WE γ 3012.389±3562.820 3922.334±3108.741 4248.954±2950.425 ≤0.001 ≤0.001 0.020
P4-TWE 0.820±0.372 1.160±0.292 1.163±0.319 ≤0.001 ≤0.001 0.998

TABLE II

CLASSIFICATION RESULTS OF PROPOSED FEATURES USING BP-NN

Normal - Onset

Inputs Accuracy (%) Sensitivity (%) Specificity (%)
mean±std best mean±std best mean±std best

O1 59.2±3.4 66.4 61.6±8.4 80.5 57.0±8.5 72.7
P4 76.6±3.4 81.6 74.2±6.8 86.8 78.9±7.3 89.7

O1,P4 75.0±3.4 80.3 72.0±7.0 87.3 77.2±5.4 88.6

Normal - Freezing

Inputs Accuracy (%) Sensitivity (%) Specificity (%)
mean±std best mean±std best mean±std best

O1 52.1±3.9 57.9 54.2±11.9 74.4 50.2±9.4 76.3
P4 73.4±3.2 78.9 72.3±6.3 86.1 74.4±5.0 86.5

O1,P4 73.9±2.8 79.6 71.2±6.1 88.1 77.2±4.7 82.9

IV. CONCLUSIONS AND FUTURE WORK

We presented results of study of early detection of FOG

in PD’s patient using EEG signals. Complemented with

special treatment such as sensory cuing, this classification

system could be used in helping PD’s patient with FOG to

’unfreeze’ this symptom before it affected the movement.

EEG subbands Wavelet Energy and Total Wavelet Entropy

features can be used to represent changing during onset

and freezing period. Classification done by BP-NN has a

promising result and shows the feasibility of using EEGs

for FOG detection. Moreover, this study support analysis of

physiological brain dynamics during FOG. It may lead to

better understanding of its underlying mechanism. Further

exploration on other features, different area of the brain and

classification methods will be our near future work before

implementing it in a device.
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