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Abstract— Freezing of Gait (FOG) is one of the most dis-
abling gait disturbances of Parkinson’s disease (PD). The
experience has often been described as “feeling like their feet
have been glued to the floor while trying to walk and as such
it is a common cause of falling in PD patients. In this paper,
EEG subbands Wavelet Energy and Total Wavelet Entropy
were extracted using the multiresolution decomposition of EEG
signal based on the Discrete Wavelet Transform and were used
to analyze the dynamics in the EEG during freezing. The
Back Propagation Neural Network classifier has the ability to
identify the onset of freezing of PD patients during walking
using these features with average values of accuracy, sensitivity
and specificity are around 75 %. This results have proved the
feasibility of utilized EEG in future treatment of FOG.

I. INTRODUCTION

After Alzheimer’s disease (AD), Parkinson’s disease (PD)
is the second most prevalent neurodegenerative disorder
which increases with age [1]. It is a slowly progressive
neurologic disorder caused by degeneration of dopamine
and other sub-cortical neurons in the substantia nigra, an
area in the basal ganglia of the brain. Dopamine is one
of neurotransmitters which help transmit a message to the
striatum in the central area of the brain to initiate and control
movement and balance.

The freezing of gait (FOG) is defined as a ’brief, episodic
absence or marker reduction of forward progression of the
feet despite the intention to walk’ [2]. It was found to
be the most distressing symptom of PD. It is a common
cause of fall, interferes with daily activities, makes people
with Parkinson’s lose confidence in walking and significantly
impairs quality of life [3]. It is one of the least understood
symptoms in Parkinson’s disease and empirical treatments
are of poor efficacy, making it an important clinical problem
(2], [4].

In recent years, a few attempts have been reported on
the detection and prediction of FOG. Since leg oscillations
are so common in episodes of freezing, they are used as
a sign of the freezing’s onset and as an indication that

AM. Ardi Handojoseno, Tuan N. Nguyen and H.T. Nguyen are
with Faculty of Engineering and Information Technology, University
of Technology, Sydney, Broadway, NSW 2007, Australia. (Aluysius-
MariaArdi.Handojoseno @student.uts.edu, TuanNghia.Nguyen@uts.edu.au,
Hung.Nguyen@uts.edu.au)

James M. Shine and Simon J.G. Lewis are with Parkinson’s Disease
Research Clinic, Brain and Mind Research Institute, University of Sydney,
Level 4, Building F, 94 Mallet Street, Camperdown, NSW, 2050, Australia.
(mac.shine@sydney.edu.au, simonl@med.usyd.edu.au)

Yvonne Tran is with the Key University Research Centre for Health
Technologies, University of Technology, Sydney and the Rehabilitation
Studies Unit, University of Sydney, Australia. (Yvonne.Tran@uts.edu.au)

978-1-4577-1787-1/12/$26.00 ©2012 |IEEE

special treatment to "un-freeze’ needs to be done immediately
[2], [S]. Two major different approaches are based on char-
acterizing freezing of gait using spatiotemporal kinematic
parameter of gait (an increased cadence, decreased stride
length, and decreased angular excursion of leg joints) and
based on frequency analysis of leg movement [6]. Some
works have also been reported using an Electromyographic
(EMG) pattern to detect the onset of FOG [7], [8]. A wear-
able device using on-body acceleration sensors to measure
the patients’ movement has been developed [9]. Functional
MRI and virtual reality-based walking tasks were utilized in
recent research to identify direct neural correlate underlying
freezing behavior in a patient with PD [4].
Electroencephalogram (EEG) has been used to identify
and analyze brain dysfunctions including Alzheimer Disease
(AD) [10], Epilepsy [11], monitoring cerebral injury and
recovery [12] and Parkinson’s Disease [13]. To the best of
our knowledge, there is no implementation of EEG for FOG
detection except in a preliminary experiment [14] . In this
paper, we present a methods for detection of FOG using EEG
signals based on Wavelet decomposition and patterns recog-
nition techniques. The propose features, subband Wavelet
Energy and Total Wavelet Entropy, were chosen as they were
reported has significant advantages in detecting changes in
a short segment of EEG signals [15]. Complemented with
the Multilayer Perceptron Neural Network, they showed a
significant change in the brain signals before freezing.

II. METHODS
A. Experimental Setup and Data Acquisition

Twenty-six patients (age 69.8 + 8.41) with idiopathic
Parkinson’s disease with significant FOG were recruited from
the Parkinson’s Disease Research Clinic at the Brain and
Mind Research Institute, University of Sydney. All patients
underwent a structured series of video-recorded timed up-
and-go tasks (TUG). Freezing episodes were defined as the
paroxysmal cessation of a patient’s footsteps during a TUG
task and were analyzed by two independent raters.

The EEG signals were obtained using a-4 channel wireless
EEG system developed by UTS with sensors are located at
occipital one (O1-primary visual receiving area), parietal four
(P4-navigational movement area), central zero (Cz-primary
motor area) and frontal zero (Fz- supplementary motor area).
Only the differential channels O1-T4 and P4-T3 were used
in this study. Raw data were acquired at sampling rate of 500
Hz in 1 to 2 hours periods for each patient and an epoch of 1
second from individual freezing events was taken. Afterward



EEGs data were divided into three groups. The first group
was recorded prior to an onset of Freezing (normal walking).
The second group is referred to a period of onset of FOG
(5 seconds before freezing). The third group contains the
EEG signals during the FOG. These data are then processed
in three stages: preprocessing stage, feature extraction and
selection stage, and classification stage.

B. Data Preprocessing

Based on visual inspection on raw data, data from 10
patients were selected and 40 samples of data from each
chosen subject were taken for each group (i.e.1200 sam-
ples). Afterwards, EEGs were filtered using band-pass and
band-stop butterworth IIR filters in order to eliminate low
frequency noise and high frequency noise (BPF 0.5-60 Hz)
and cancel out the 50 Hz line frequency (BSF 50 Hz). Then,
a simple threshold filter was applied for further eliminated
noise, based on comparison of the signal data with its
neighbor and the standard deviation of the data.

C. Feature Extraction and Selection

Compared to a traditional Fourier Transform, Wavelet
Transform has the advantages of time-frequency localization,
multiscale zooming, and multirate filtering for detecting and
characterizing transients since its building block functions
are adjustable and adaptable [16]. It gives an excellent feature
extraction from non-stationary signals such as EEGs. In this
research, the discrete wavelet transforms (DWT) based on
dyadic scales and positions is used. The DWT is defined as,

DWT(j.k) = ﬁ | xw

where 2/ and k2/ are the scale (reciprocal of frequency) and
translation (time localization) respectively.

In the procedure of multiresolution decomposition of sig-
nal x(¢) based on the DWT, each signal is simultaneously
passed through a complementary high pass filter (HPF) and
low pass filter (LPF) and is down sampled by 2. The outputs
of the high pass and low pass filters provide the detail D;
with the frequency band [f,,/2 : f,»] and the approximation
A; with the frequency band [0 : f;,,/2], respectively. Frequency
subbands are related to the sampling frequency of the original
signal f; in which f,=f;/20*)) where I is the level of
decomposition.

The Wavelet decomposition for a given EEG signal x(r)
that shows the DWT with their coefficients could be written
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The EEG signals then can be considered as a superposition
of different structures occurring on different time-scales at
different times. For EEG sampled at 500 Hz, a six level
decomposition results in a good match to the standard clinical
EEG subbands: delta (As: 0-3.9 Hz), theta (Ds: 3.9-7.8
Hz), alpha (Ds: 7.8-15.6 Hz), beta (D4: 15.6-31.3 Hz),
gamma (D3: 31.3-62.5 Hz). Two of the highest resolution
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Fig. 1. Wavelet decomposition of EEG into five EEG subbands

components are noises: D, (62.5-125 Hz) and D; (125-250
Hz). Daubechies (db4) wavelets are selected as the wavelet
function due to their smoothing feature which is suitable
for detecting changes of the EEG signals. Reconstruction of
these signals into five constituent EEG subbands is depicted
in Fig.1.

The energy in these components and their wavelet co-
efficients are related to the energy of the original signal,
according to Parseval’s Theorm. This partition at different
time (k) and in scale (j=1,....,/) can be presented as:

N
ED;j=Y Dl j=1,..1 (3)
k=1
J 2
EA =Y |Aj4 (4)
k=1

where N is the number of the coefficients of the detail or
approximation at each decomposition level.

The energy distribution diagrams of EEG subbands at
channel O1 and P4 of three groups of signal: a) normal; b)
onset; c) freezing shows that EEG wavelet energy increases
before freezing in all subbands (Fig. 2). In comparison with
the EEG signal from normal stage, subbands alpha, beta,
and gamma of freezing stage have a bigger percentage of
the values of the total energy of the signal.

Total energy of the wavelet coefficients will be

Eror = EA[ +EDj (5)

Normalization values of each subbands wavelet energy
(WE) results in the Relative Wavelet Energy (RWE)

_E

Etot
where E; refers to ED; and EA;. Further analysis on the
distribution energy using the Shannon information entropy
theory reveals the shift of the degree of complexity of the

signal. Based on distribution of the RWE, the total wavelet
entropy (TWE) is defined as [15]:

Dj (6)
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Fig. 2. Group means of wavelet energy of EEG subbands at O1 and P4
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Comparison of the TWE in three groups data (Fig.3) sug-
gests that EEG activity in freezing stage is less regular (more
complex) than in a normal condition in the occipital and
parietal regions. Significant changes happen even between
normal and onset with channel P4 appears as a stronger
indicator of changing than channel O1.

Non-parametric statistical analysis the Wilcoxon Sum
Rank Test was implemented to evaluate the statistical dif-
ferences between those features of three groups of data and
to select the significant one that differentiates those groups
of data.

D. Classification

Based on the feature selection and their combination
possibilities for classification, different Neural Networks
with different set of inputs are developed. A three layer
Back Propagation Neural Networks (BP-NN) is used, with
56% of the data trained by Levenberg Marquardt algoritm
(25% and 19% of the data are used for validation and
test, respectively). Tangent Sigmoid is chosen for activation
function and training process is stopped by the validation
set. The number of hidden nodes is selected between 4
to 7 depending on the number of inputs dimension and
the number of training pairs. Twenty separated training and
testing were done for each feature. Mean, standard deviation
and the best result were recorded for further analysis.

ITII. RESULTS AND DISCUSSION

Statistical analysis indicates that group Normal differs
from the other two groups (Onset and Freezing) at its Wavelet
Energy subbands delta, theta, and alpha as well as their
TWE (Table I). The higher subbands Wavelet Energy (beta
and gamma) in channel O1 do not appear to be significantly
different from each other as their confidence level less than
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Fig. 3. The Box Plot of the TWE of three groups data of PD patients

99% (p-value >0.01). However, all subbands wavelet energy
at channel P4 are statistically different, suggesting this region
has been deeply affected by the FOG. The degree of order
of wavelet energy significantly increased from onset stage
to freezing stage at occipital region (O1) in contrast with
continuous decreasing regularity at parietal region (P4) as the
general trend of dynamic from normal to freezing. This trend
was contrary to the pattern of EEG signal of AD and epileptic
patients during seizure which becomes more organized and
has less complexity and chaoticity [10], [11].

While the subband delta is likely to be affected by noise,
it is observed that the theta subband wavelet energy shows
the most considerable difference between all three groups.
It is consistent with a previous study of spectral analysis
using Fast Fourier Transform on the same data in which
theta appears as the most significant EEG subband affected
by freezing [14]. However, contrary to Palmer’s study [17]
in which beta band EEG is found to be more important for
dual task performance in PD which may lead to FOG, in
this study alpha has a more significant contribution to task
performance than beta.

For classification, four features of channel O1 were taken
as they have a significantly high confidence level beyond
criterium (p-value <0.01): WE delta, WE theta, WE alpha
and TWE. All EEG subbands WE and TWE of channel P4
were implemented as inputs. Experiments were conducted
for each location of brain (O1, P4) and combination of it.

The Back Propagation Neural Networks using Levenberg
Marquardt algoritm for training shows a promising result in
testing set as is indicated in Table II. Using only channel P4
has already given more than 76.57 % correct in classifying
normal-onset. Performance was slightly increased in accu-
racy and specificity when it was combined with channel O1
to differentiate between normal and freezing. The success
rate of differentiate between normal and onset (76.6 4+ 3.4)
is slightly higher than between normal and freezing (73.88
4 79.6) implied that the neurological process of freezing in
the brain started in 5 second periods before it appeared as
freezing of gait. Compared to other works in different brain
diseases such as AD and epilepsy which obtain accuracy up
to 87.1 % [11] and sensitivity on average 83 % [18], clearly
more research needs to be done to increase the performance
of the system.



TABLE I
STATISTICAL CORRELATION ANALYSIS BETWEEN 3 DIFFERENT STAGES OF PD’S PATIENTS

Channel- mean-=+std p-value

Feature Normal (N) Onset (O) Freezing (F) N-O N-F O-F
O1-WE 0  16939.779+26347.684  20781.927+28844.102  12840.539+21509.292 0.002 0.016 < 0.001
O1-WE 6 1250.2054+1496.056 2824.346+4010.260 1593.678+1997.817 <0.001  <0.001 <0.001
O1-WE o 1761.528+1828.380 2399.470 +2168.370 2105.513+2200.471 <0.001 0.004 0.002
O1-WE 8 2054.270+2776.284 2193.293+2729.281 2075.393+2411.743 0.028 0.174 0.290
O1-WE y 2250.084+3129.022 2543.499 +4003.021 2659.319+4233.292 0.339 0.083 0.373
O1-TWE 0.93240.395 1.070+0.322 0.976+ 0.353 <0.001  <0.001 <0.001
P4-WE & 14132.911£20644.905  25843.544+32521.796  15637.085+£18483.045  <0.001  <0.001 <0.001
P4-WE 6 1319.528+1366.631 3593.649+3857.009 2657.609+2045.397 <0.001  <0.001 0.002
P4-WE « 2622.983+2874.563 4546.447+3056.553 5271.596+3766.857 <0.001  <0.001 0.013
P4-WE 3 2694.404+2835.144 4038.314+3000.283 4622.378+3257.461 <0.001  <0.001 0.007
P4-WE vy 3012.389+3562.820 3922.334+3108.741 4248.954+2950.425 <0.001  <0.001 0.020
P4-TWE 0.820+0.372 1.160+£0.292 1.163+0.319 <0.001  <0.001 0.998

TABLE 11

CLASSIFICATION RESULTS OF PROPOSED FEATURES USING BP-NN

Normal - Onset

Inputs Accuracy (%) Sensitivity (%) Specificity (%)
meantstd best meantstd best meandstd  best
O1 59.2434 664  61.6484 805 57.0&85 727
P4 76.6+£3.4 8l.6  742+68 86.8 789+73  89.7
Ol1,p4 750+£34 803 72.0+7.0 873 772454 88.6

Normal - Freezing

Inputs Accuracy (%) Sensitivity (%) Specificity (%)
meantstd  best meantstd best meandstd  best
O1 521439 579 5424119 744 502+94 763
P4 734432 789  723+£63  86.1 744450  86.5
O1,p4 739428 79.6  71.2+6.1 88.1 77.2+47 829

IV. CONCLUSIONS AND FUTURE WORK

We presented results of study of early detection of FOG
in PD’s patient using EEG signals. Complemented with
special treatment such as sensory cuing, this classification
system could be used in helping PD’s patient with FOG to
‘unfreeze’ this symptom before it affected the movement.
EEG subbands Wavelet Energy and Total Wavelet Entropy
features can be used to represent changing during onset
and freezing period. Classification done by BP-NN has a
promising result and shows the feasibility of using EEGs
for FOG detection. Moreover, this study support analysis of
physiological brain dynamics during FOG. It may lead to
better understanding of its underlying mechanism. Further
exploration on other features, different area of the brain and
classification methods will be our near future work before
implementing it in a device.
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