
 

 
 

 

Abstract—Discovering information encoded in non-invasively 
recorded biosignals which belies an individual’s well-being can 
help facilitate the development of low-cost unobtrusive medical 
device technologies, or enable the unsupervised performance of 
physiological assessments without excessive oversight from 
trained clinical personnel. Although the unobtrusive or 
unsupervised nature of such technologies often results in less 
accurate measures than their invasive or supervised 
counterparts, this disadvantage is typically outweighed by the 
ability to monitor larger populations than ever before. The 
expected consequential benefit will be an improvement in 
healthcare provision and health outcomes for all. The process 
of discovering indicators of health in unsupervised or 
unobtrusive biosignal recordings, or automatically ensuring the 
validity and quality of such signals, is best realized when 
following a proven systematic methodology. This paper 
provides a brief tutorial review of supervised learning, which is 
a sub-discipline of machine learning, and discusses its 
application in the development of algorithms to interpret 
biosignals acquired in unsupervised or semi-supervised 
environments, with the aim of estimating well-being. Some 
specific examples in the disparate application areas of 
telehealth electrocardiogram recording and calculating post-
operative systemic vascular resistance are discussed in the 
context of this systematic approach for information discovery. 

I. INTRODUCTION 

A. Automation 

Engineers strive to automate many labor intensive 
processes, which are usually the reserve of trained human 
specialists; this has certainly been the case for biomedical 
engineers. While certain branches of biomedical engineering 
continue to make advancements in sensing and transduction 
technologies for physiological measurement, on a parallel 
track is an effort to automate, standardize and even improve 
on human interpretation of these measurements. 

B. Established clinical applications 

Until recently, this effort to mimic, support and improve 
the human interpretation of physiological measurements has 
been somewhat confined to the clinical sphere. A small 
selection of examples include: the tedious task of 
interpreting electrocardiogram (ECG) recordings [1]; or 
classifying stages of sleep from an eight hour overnight 
polysomnography [2]. Computer-based interpretation of 
measurements is well established in many clinical areas as a 
support tool. 
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C. Healthcare at a distance 

A more recent research trend has pondered the usefulness 
of communications technologies, primarily the internet, to 
improve health and well-being. This mode of healthcare 
delivery has been termed ‘telehealth’. Computer-aided 
interpretation of remotely acquired biosignal recordings 
poses a unique set of challenges related to the design of the 
measurement hardware and the associated interpretive 
software employed; some of which are discussed later. 

D. Point-of-care 

Another recent driver of medical device innovation has 
been the continuing miniaturization of transduction and 
processing hardware, resulting in a wide variety of point-of-
care testing technologies; where the monitoring technology 
is easily brought to the patient. With this style of monitoring, 
it is desirable to deliver real-time interpretation. While many 
of these devices record the presence or concentration of 
pathogens, biomarkers or other agents in bodily fluids, 
point-of-care biosignal recording, such as bedside 12-lead 
ECG, is increasingly common. 

E. Emergency care 

Point-of-care diagnostics and therapeutics can also extend 
to community care. They are frequently used by paramedics 
or emergency departments to measure ECG, blood pressure 
(BP) and pulse oximetry (using photoplethymography 
(PPG). Automatic external defribrillators are becoming 
commonplace in public spaces. As this trend towards 
miniaturization advances, other tests which may currently 
require unwieldy apparatus will become portable. 

This shift towards the miniaturization of established 
monitoring equipment is inspiring the development of new 
screening tools, which utilize these same recording 
modalities by uncovering hitherto unknown correlates of 
serious conditions, such as sepsis or stroke, encoded in these 
commonly acquired biosignals [3, 4]. 

F. Ambulatory monitoring 

Yet another variation on this theme is what has become 
known as ambulatory monitoring. This is not a new concept, 
with the development of the Holter ECG monitor in the 
1960s being one of the first embodiments of an ambulatory 
monitor [5]. While ambulatory bioelectric signal recording 
has progressed to the point that exercise heart rate monitors 
are commercially available [6], another field of ambulatory 
monitoring has arisen to assesses movement and mobility 
using miniaturized inertial sensors [7]. Current application 
areas attracting the greatest research attention include 
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activity monitoring, energy expenditure estimation, fall 
detection and fall risk estimation [7].  

G. Efficacy versus reach and speed 

While the developments and trends described above are 
certainly exciting, these benefits afforded by device 
miniaturization and ubiquitous communication are not 
without their disadvantages.  

The principal benefits of these systems relate to their reach 
into the community or the improved promptness with which 
monitoring is performed. For example, screening of large 
populations for their risk of falling [8], or a very early 
assessment of whether someone is suffering from stroke [4], 
should be viewed as an improvement in healthcare. 

The disadvantages alluded to relate to the inherent loss of 
accuracy of such systems. This usually stems from three 
sources: use of compromised availability of biosignals, 
environmental noise and movement.  

For example, sleep apnea screening has moved from the 
sleep clinical into the home. This has greatly increased the 
number of people who can be screened. However, a full 
polysomnograph is not feasible in the home. These at-home 
systems compromise their accuracy to improve usability, 
using only a subset of required signals; for example, nasal 
airflow, chest movement, ECG or pulse oximetry [9, 10]. 
Furthermore, subject movement will greatly disrupt or 
destroy the recorded signals; the latter due to loss of 
electrode or transducer placement. When designed with high 
sensitivity and low specificity, these lower accuracy systems 
can still prove useful. 

H. Commonalities 

The common characteristic underpinning all of the 
abovementioned monitoring systems are: (i) the 
measurement is performed in a noisy or unsupervised 
environment; (ii) use a subset of the signals normally 
available in a clinical environment to optimally extract 
correlates of a desired, but unknown physiological 
parameter. The remainder of this paper discusses the 
methodology of supervised learning and gives some 
examples of its application in constructing an algorithm to 
perform automated signal interpretation. 

II. A BRIEF REVIEW OF SUPERVISED LEARNING 

The following sections momentarily digress away from the 
discussion of medical devices to discuss the background of 
supervised learning [11].  

A. The concept of the feature space and pattern labels 

‘Feature’ is the term given to a characteristic of a pattern. 
Here, by pattern, we may mean a biosignal recorded from a 
human. We can extract many features from the pattern to 
summarize its properties. This group of extracted features is 
called a feature vector.  

The types of features we extract should be intimately 
related to the recognition task. They should ideally remain 
uninfluenced by all other signal variations; for example, 
recording from two different people should ideally not 

influence a feature’s discriminatory power due to differences 
between the people. 

For brevity, let us consider only real-valued features. If 
there are d features, the d-dimensional feature vector can be 
visualized as a point in a d-dimensional feature space. This 
feature vector also has an associated label, which may the 
health parameter to be estimated; the label can be real, 
discrete or nominal valued. For example, systolic and 
diastolic BP are features extracted from cuff pressure and 
auscultatory waveforms, while the associated label might 
take the nominal value of ‘high BP or ‘low BP’. 

B. Feature extraction 

The method by which features are extracted is by far the 
most important part of the entire recognition process. The 
number of transformations which could be performed are 
infinite, but there are some broad categories of methods 
which can be used, including Fourier analysis, wavelet 
analysis, empirical mode decomposition, and morphological 
analysis to name but a very few. (The application of these 
methods in data and image compression algorithms is not 
coincidental, as feature extraction also aims to compress the 
pattern, but according to different criteria). 

1) Windowing 
It may be the case that the target labels change over time, 

in which case a sliding window is often moved across the 
signal and a feature vector extracted for each window 
placement. This leads to the notion of preprocessing. 

2) Preprocessing 
Preprocessing is anything which prepares the signal for 

feature extraction. There is no clear distinction between what 
is considered feature extraction and what is considered 
preprocessing. However, when windowing (above) is used, 
preprocessing can be considered as any operation applied to 
the signal at a global level before windowing is performed 
and features are extracted. Filtering is a perfect example of a 
preprocessing operation. 

C. Classification or regression 

Whether the label applied to the feature vector is real, 
discrete or nominal, determines the type of estimation model 
used. If nominal or discrete, a pattern classifier is used [11]. 
If real or discrete, a regression model is used; although 
regressing to a discrete (but possibly real-valued) feature 
may not work well in practice, and a classifier would be 
preferred.  

1) Supervised classification 
A classifier attempts to carve the feature space into regions 

(not necessarily contiguous) which group all feature vectors 
with the same label together. For supervised training of 
classifier models, a large pool of training data is required to 
discover these regions. The choice of mathematical function 
to parameterize these regions is primarily what delineates the 
many flavors of classifier model described in the literature. 
At heart they all perform the same task, with their own 
application-dependent advantages and disadvantages; 
namely, computational complexity, memory requirements 
and training data requirements relative to feature space 
dimension. 
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2) Regression 
Linear multiple regression attempts to find a vector (the 

normal to a hyperplane) pointing in some direction in the 
feature space, such that when all the feature vectors are 
projected onto this vector they are arranged in approximately 
the same order as their real-valued labels. Phrased another 
way, it finds the optimal set of weights, and an additive 
constant, such that a weighted sum of the features gives the 
least-mean-square error to the real-valued target labels . 

D. Model validation with finite amounts of training data 

Training and testing of the model should never be 
performed with the same data, or the results will be 
optimistically biased. However, often there are only a finite 
number of feature vectors available to train the classifier. 
One might hold back some data for testing – but which?  

To solve this problem, cross validation is used. Some 
fraction of the data, either chosen systematically or 
randomly, is removed and the classifier trained with the 
remainder. The withheld data is later used for testing. This is 
repeated many times, withholding different data subset each 
time for testing, with the averaged results used as the final 
performance metric. 

E. Feature selection 

With infinite amounts of training data, all imaginable 
features can be included in the feature vector, and if they do 
not contribute information they will be ignored. With 
smaller training sets, the generalized classifier performance 
is intimately related to the ratio of the dimension of the 
feature space to the number of training vectors. 

Feature selection involves searching through as many 
feature subsets as possible to see which yield the best 
classifier generalization, as determined by cross validation. 
Other more general methods project the feature space to a 
lower dimensional subspace, while preserving the 
discriminatory information of the features. 

However, care must once again be taken when performing 
feature selection (dimension reduction) with small training 
sets. Here a second outer cross validation loop is required to 
ensure that the features (subspace) selected are not simply 
optimized for the small training set available.  

III. SOME ILLUSTRATIVE EXAMPLES 

The following two sections provide some specific illustrative 
examples of the use of supervised learning to develop 
automated algorithms for the interpretation of non-invasively 
acquired biosignals, recorded (or destined to be recorded) in 
unsupervised or semi-supervised environments. 

A. ECG signal quality 

ECG recordings acquired in unsupervised telehealth 
environments suffer from detrimental movement artifact and 
electrode contact issues. Our research group has been 
working to develop algorithms to detect movement artifact 
[12] and interpret the general quality of single-lead ECG 
recordings [13]. 

Fig. 1 shows a raw single-lead ECG signal acquired 
unsupervised by an elderly telehealth patient using a lead-I 
configuration, with the hands placed on dry electrode plates.  

 
Fig. 1. A raw lead-I ECG signal acquired from an elderly telehealth patient 
in their own home, placing their hands on dry electrode plate electrodes. 
Artifact before 5 s is detected using the heuristic algorithm in [12], the 
quality of the remaining signal is assessed using a supervised classifier 
model [13]. 

 
Fig. 2. ECG signal from Fig. 1 after pre-processing: filtering, QRS 
detection, segmentation, alignment and clustering (to account for ectopic 
beats). Seven features (which constitute a feature vector) are extracted 
from this pre-processed data for the purposes or classifying into one of 
three possible quality classes; ‘Good’, ‘Average’ or ‘Bad’. 

 
Fig. 3. Scatter plot of two of the seven extracted features (see Fig. 2) for all 
300 training signals. The objective of the classifier is to segment the 
feature space into regions so that a new unseen feature vector (from a new 
ECG signal) can be classified into a quality class. If a continuous scale of 
quality is required, it would be more advisable to use a multiple regression 
model than a discrete output classifier model. 

Once the artifact in the early part of the signal is removed, 
the remainder of the signal is pre-processed (filtering, QRS 
detection, segmentation, alignment and clustering) to 
generate Fig. 2, ready for feature extraction.  

A number of features are extracted which quantify the 
variation between beats and the amount of noise present. 
Two of these features extracted from 300 such ECG signals, 
with qualities labels of ‘Good’, ‘Average’ and ‘Bad’, are 
plotted in Fig. 3. A supervised classifier model can then 
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mathematically generate a near-optimal decision rule to 
segment this feature space into regions according to the 
quality labels assigned to the training data. 

B. Systemic vascular resistance 

The same general methodology has been applied to non-
invasively estimate systemic vascular resistance (SVR) from 
a PPG signal [14]. Knowledge of SVR and BP can be used 
to estimate cardiac output; which normally requires an 
invasive indicator dilution assessment or a skilled ultrasound 
technician.  
 Features are extracted from the waveform and spectrum of 
a 4-minute segment of the PPG. Fig. 4 shows PPG signals 
acquired from subjects with low and high SVR. Pre-
processing is also performed to detect the beat locations, and 
some features are extracted from individual beats. Three of 
these features plotted as points in the feature space for all 48 
subjects can be seen in the 3-D plot of Fig. 5. Again, a 
supervised pattern classifier is trained and validated using 
cross validation, and a feature selection search performed to 
highlight those features with the most discriminatory power. 

 
Fig. 4. Sample PPG plots for low (top) and high (bottom) SVR subjects. 
Generating some features involves calculating the spectrum of the signal, 
extracting the resulting power in different frequency bands to estimate 
larger low frequency variation seen in subjects with high SVR [14]. 

 
Fig. 5. Three features extracted from 48 PPG signals. Labels represent 
‘low’, ‘medium’ and ‘high’ SVR classes. Features: 1) low-to-high 
frequency power ratio, 2) peak-to-notch time, 3) reflection index. [14]. 

IV. DISCUSSION AND CONCLUSION 

This paper has presented a discussion on a continuing 
research trend which attempts to make medical device 

technology smaller, more portable and more intelligent. 
While such advancements are driven partly by progress in 
hardware and transduction, the unreliability of the signals 
acquired with such devices when used in unsupervised 
environments must be offset with intelligent signal 
processing to validate the quality of such signals. 

Furthermore, only the most robust of signals may be 
reliably acquired in unsupervised environments. This has led 
a rise in research activity aiming to replicate established 
supervised clinical assessments using only a subset of the 
original signals required, or using a secondary set of signals 
which are indirectly influenced by the physiological system 
under investigation, but are easier to obtain reliably. 

Finally, a tutorial overview is provided on how supervised 
classification methodologies may be applied to this task of 
discovering and automatically classifying health-related 
information from non-invasively acquired biosignals. Some 
illustrative examples in ECG signal quality validation and 
non-invasively estimating SVR have been provided. 
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