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Abstract— Biomedical data analysis is usually carried out by
assuming that the information structure embedded into the
biomedical recordings is linear, but that statement actually
does not corresponds to the real behavior of the extracted
features. In order to improve the accuracy of an automatic
system to diagnostic support, and to reduce the computational
complexity of the employed classifiers, we propose a nonlin-
ear dimensionality reduction methodology based on manifold
learning with multiple kernel representations, which learns the
underlying data structure of biomedical information. Moreover,
our approach can be used as a tool that allows the specialist
to do a visual analysis and interpretation about the studied
variables describing the health condition. Obtained results show
how our approach maps the original high dimensional features
into an embedding space where simple and straightforward
classification strategies achieve a suitable system performance.

I. INTRODUCTION

The analysis of biomedical data is a challenge that
mainly requires to discover the appropriated structure of
the information embedded into the registers. Achieving a
suitable analysis of the data allows to improve the per-
formance of automatic systems to diagnostic support and
simplify its implementation. Often, the embedded structure
of the information is assumed as linear by many techniques,
such as: principal component analysis (PCA), linear dis-
criminant analysis (LDA), multidimensional scaling (MDS),
etc. Nevertheless, the linearity assumption does not usually
corresponds to the real behavior of the biomedical data.
Indeed, the most common recordings describing the human
health status (e.g. speech recordings, phonocardiogram, elec-
trocardiograms, electroencephalograms, among others) are
composed by several nonlinearly correlated variables lying
in high dimensional spaces. In this regard, it is necessary
to consider the analysis of the data by means of nonlinear
dimensionality reduction (NLDR) techniques.

In this way, it is possible to represent in a low dimensional
space (or embedding space) the high dimensional data,
generally assuming that the input data are sampled from
a smooth underlying manifold. The NLDR methods aim to
obtain useful and compact representations of the information.
Nonetheless, there are some limitations in the application of
these kind of techniques when data lie in separated groups
[4]. Above issue is faced during the design of automatic
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systems to diagnostic support. Indeed, most of the NLDR
methods are not conceived to consider the class labels (e.g.,
control patients or pathological patients) of the data as extra
information, which should enhance the low dimensional
representation of the data, improving the system accuracy.

Several approaches relating supervised manifold learning
have been presented. In [7] is reported a supervised Locally
Linear Embedding (LLE) method, called α-LLE, which
enforces the separation among classes according to a weight-
ing parameter controlling the amount of class information
that is incorporated. In [9], a local formulation of linear
discriminant analysis is introduced. Next, in [6] the class
labels are used to determine the neighbors of the training
data so as to map overlapping high dimensional data into
clusters in the embedded space. Mostly, these approaches
either omit the preservation of the high dimensional local
data structure in the embedding space (yielding overtraining),
or they require the use of free parameters controlling the
smoothing of the transformation to avoid the over fitting
and to reduce the noise sensitivity. Furthermore, in [4] it
is proposed a supervised version of LLE, termed C-LLE,
which employs class labels as extra information to guide the
procedure of dimensionality reduction allowing to figure out
a suitable representation for each one of them. The amount
of class label information incorporated in the embedding
process is controlled by a tradeoff parameter, however, the
upper bound of the tradeoff is not well defined, which can
be problematic for an inexpert user and could increase the
computational load of the algorithm.

Recently, some machine learning approaches have shown
that using multiple kernels as similarity measure, instead of
just one, can be useful to improve the feature extraction [5],
[13]. In this sense, we propose a supervised NLDR method
based on Laplacian Eigenmaps (LEM) algorithm [3] using
multiple kernel representations (MKR). Our approach, which
we named LEM-MKR, incorporates class label information
while the local structure topology of the data is preserved
during the mapping. The proposed LEM-MKR improves
the accuracy of automatic systems to diagnostic support,
reducing the computational complexity of the final classi-
fiers, which could be useful to real-time implementations.
Moreover, our approach also can be used as a tool that allows
the specialist to do a visual analysis and interpretation about
the studied variables of the health condition.

The remainder of this work is organized as follow. In sec-
tion II the proposed LEM-MKR methodology is described.
In section III the experimental conditions and results are
presented. Finally, in sections IV and V we discuss and
conclude about the attained results.
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II. BACKGROUND

Laplacian Eigenmaps (LEM) is a NLDR technique based
on preserving the intrinsic geometric structure of the mani-
fold [3]. Let X ∈ ℜn×p the input data matrix with sample
vectors xi (i = 1, . . . ,n), LEM aims at providing a mapping
to a low dimensional Euclidean space Y ∈ ℜn×m, with
row samples yi, being m� p. The algorithm apprises the
following steps. First, an undirected weighted graph G(V,E)
is built; where V are the vertices and E the edges. In this
case, there are n vertices, one for each xi. Nodes i and j are
connected by Ei j = 1, if i is one of the k nearest neighbors of
j (or viceversa), being measured by the Euclidean distance
[3]. Second, a weight matrix W∈ℜn×n is calculated as Wi j =
κ (xi,x j), if Ei j = 1, otherwise Wi j = 0, being κ (·, ·) a kernel
function. After that, the L ∈ℜn×n graph Laplacian matrix is
given by L = D−W, where D ∈ℜn×n is a diagonal matrix
with Dii = ∑ j Wi j. Finally, Y is calculated by minimizing

∑i j (yi−y j)
2 Wi j. (1)

Note that above minimization implies a penalty if neigh-
boring points xi and x j are mapped far apart. Equation
(1) can be solved as the generalized eigenvalue problem
LY:,s = λsDY:,s; where λs is the eigenvalue corresponding
to the Y:,s eigenvector, with s = 1, . . . ,n. First eigenvector
is the unit vector with all equal components, while the re-
maining m eigenvectors form the embedded space. However,
conventional NLDR approaches are not suitable for pattern
recognition tasks, e.g., biomedical data analysis, because of
the lacking of methods to incorporate label information in
the mapping. A supervised NLDR mapping could enhance
the data separability in further classification stages [4], [12].

Recently, some machine learning approaches have shown
that using multiple kernels to infer the data similarity instead
of just one (MKR), can be useful to improve the data
interpretability [5], [13]. Thus, based on MKR we propose
to incorporate the label information of the data into the
LEM mapping. Given Z kernel functions, a combined kernel
function can be computed as κξ (xi,x j) = ∑

Z
z=1 ξzκz (xi,xi),

subject to ξz ≥ 0, and ∑
Z
i=1 ξz = 1 (∀ξz ∈ ℜ). In this work,

we propose to analyze the input data X considering both the
local and class membership relationships among samples.
Note that the optimization (1) is directly related to the
weight matrix W, which can be analyzed as a kernel matrix.
Therefore, it is possible to employ different similarities
measures in the LEM formulation by means of MKR, or as
we called, a LEM-MKR approach. Hence, we consider two
weight matrices, We and Wc, in the LEM mapping process.
The former is computed as

Wei j =

{
κ (xi,x j) Ei j = 1
0 Ei j = 0 , (2)

considering traditional LEM assumptions. Now, let c∈ℜn×1

a class label vector with ci ∈ {1, . . . ,C}, being C the number
of classes in X, Wc can be expressed as

Wci j = δ (ci− c j)
[
κ (xi,x j)+κ (xi,µµµ i)+κ

(
x j,µµµ j

)]
(3)

It is important to note that the function δ (ci− c j) in (3)
penalizes the non-class memberships, where δ (ci− c j) = 1,
if and only if ci = c j, otherwise, it is equal to zero value.
Besides, µµµ i and µµµ j are the average vectors of such class

from xi and x j belong. The terms κ (xi,µµµ i) and κ

(
x j,µµµ j

)
aim to reveal the similarity of each sample with the average
intra-manifold structure of each class. Moreover, κ (xi,x j)
considers the similarity between samples of the same class.
Inspired by MKR, equations (2) and (3) can be used to
computed the weight matrix WT as

WT = ξeWe +ξcWc, (4)

subject to ξe + ξc = 1. From equation (4), the combined
Laplacian matrix is calculated as LT = DT −WT , where
DT ∈ℜn×n is a diagonal matrix with DTii = ∑ j WTji . There-
fore, a new NLDR objective function can be written as
∑i j (yi−y j)

2 WTi j , which can be solved as a generalized
eigenvalue problem, fixing ξe and ξc.

The ξe and ξc parameters in (4) give a tradeoff between
the local appearance and the class label similarities retained
in Y. If ξe = 0 (ξc = 1), we have the original mapping of
LEM. As ξc increases, then ξe decreases due to the constraint
ξe+ξc = 1. Therefore, for a given pair of points (ξe,ξc), we
can infer both, the local and the class label representation
errors as εe = ∑i j (yi−y j)

2 Wei j , and εc = ∑i j (yi−y j)
2 Wci j ,

respectively. Looking for the simultaneous minimization of
both errors, we employ the parametric plot εe versus εc, as
a tool to study the behavior of these quantities, with all
them normalized between 0 and 1. Based on the L-curve
criteria for Tikhonov regularization, the point with maximum
curvature results to be a good choice for ξe and ξc. Note
that εe determines if the underlying data structure is not
well preserved in Y, while εc establishes the quality of the
separability among classes.

On the other hand, even when NLDR algorithms provide
an embedding for a fixed dataset, it is necessary to generalize
their results to new locations in the input space. Therefore,
given the embedding space Y, a new sample xnew can be
mapped by the minimization of ‖xnew−∑

k
r=1 vrηηηr‖2, where

∑
k
r=1 vr = 1, being ηηηr one of the k nearest neighbors of xnew

in X (see [14] for details). In Fig. 1 a comparison between
traditional PCA projection and LEM-MKR is presented for
a synthetic nonlinear structured data [4].

Nonlinear data PCA LEM-MKL

Fig. 1. Triple swiss-roll (n = 1000, p = 3, C = 3, m = 2). Traditional PCA projection
does not unfold the underlying structure of the input data, and it overlaps samples of
different classes. LEM-MKR projection conserves the local structure of each swiss-roll
while separates, as well as possible, samples from different classes.
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III. EXPERIMENTS

We aim to demonstrate the advantages of our approach as
a tool to outperform diagnosis support systems for automatic
detection of diseases. A general scheme of such kind of
system can be summarized as in Fig. 2. First, a preprocessing
stage is used to prepare the raw data for further analysis.
Then, some features are estimated according to the studied
phenomenon. In most of the cases, it is difficult to directly
interpret the obtained information, due to the complexity and
the large amount of obtained features. Before a classifier can
be applied with a reasonable hope of generalization, a small
number of useful features will have to be extracted.

Biomedical data

Preprocessing Feature
estimation

Feature
extraction

Fig. 2. Diagnosis support system scheme for automatic detection of diseases.

LEM-MKR is tested as feature extraction stage, using a
linear kernel to find the local and the class membership
relationships among samples in (2) and (3). We compare
the performance of LEM-MKR against some linear and
nonlinear unsupervised feature extraction methods: PCA,
LLE, LEM [3], [14], and against the supervised NLDR tech-
niques: α-LLE and C-LLE [4], [12]. The dimension of the
embedding space m is fixed looking for a 95% of expected
local variability [7]. The k value for the NLDR algorithms
is chosen according to [10], in which an specific number of
neighbors for each sample is computed. The parameter α in
α-LLE is selected from the set {0,0.2, . . . ,1} according to
the training error. Two straightforward classifiers are tested:
linear discriminant classifier (ldc), and k-nearest neighbors
classifier (knnc). A 10 folds cross-validation scheme is
employed to determine the performance of the system. The
number of neighbors for knnc is optimized with respect to
the leave-one-out error of the training set.

Four biomedical databases are tested. The former contains
voice records of children with and without Cleft Lift and
Palate (CLP). The main goal is to detect and characterize the
presence of hypernasality in the speech registers. This dataset
is provided by Signal Processing and Recognition Group-
SPRG of the Universidad Nacional de Colombia, Manizales.
The database holds 266 voice records from children between
5 and 15 years old, who uttered the Spanish vowels. There
are 110 children labeled by a phoniatry expert as healthy, and
156 labeled as hypernasal. We employ the preprocessing and
feature estimation stages of the voice records according to
[11], leading 147 acoustic features for each sample.

The second database is the phonocardiographic database
(PCG), also provided by SPRG, which is composed by 35
adult subjects (16 normals and 19 with murmur). Eight
recordings were taken from each patient, corresponding to
the four traditional focuses of auscultation (mitral, tricuspid,
aortic and pulmonary areas) in the phase of post-expiratory
and post-inspiratory apnea. The signals were digitized at
44.1kHz with 16-bits per sample. Furthermore, in order to

select beats without artifacts and another type of noise that
can degrade the performance of the algorithms, a visual and
audible inspection was carried out by cardiologists. Thus,
548 individual beats were extracted, 274 for each class,
using an R-peak detector. The recordings are characterized
by means of a time-frequency representation, particularly, the
spectrogram obtained by a Short-Time Fourier Transform (38
frequencies and 480 instants of time, see [2] for details).

The third database is the Oxford Parkinson’s disease
detection (PARKINSON), which is composed of a range
of biomedical voice measurements from 31 people, 23 with
Parkinson’s disease (PD). The data target is to discriminate
healthy people from those with PD. The dataset contains 195
voice recording, which are preprocessed and characterized as
in [8], obtaining 23 acoustic features for each sample.

Finally, an EPILEPSY database is tested, which contains
EEG signals of 29 patients with medically intractable focal
epilepsies. They were recorded by the Department of Epilep-
tology of the University of Bonn, by means of intracranially
implanted electrodes [1]. The database comprises five sets
(denoted as Z,O,N,F,S) composed of 100 single channel
EEG segments, which were selected and extracted after
visual inspection from continuous multichannel EEG to avoid
artifacts (e.g. muscular activity or eye movements). All
EEG signals were recorded with an acquisition system of
128 channels, using average common reference. Data was
digitized at 173.61 Hz, and time–frequency and time–varying
decomposition methods are used as feature extraction stage.

Table I presents the dataset properties and the classification
accuracy for all the studied feature extraction methods. More-
over, the PCA and LEM-MKR 2D projections are shown for
CLP and EPILEPSY (Figures 3(a) and 3(b)).

LEM-MKL
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Fig. 3. Datasets visualization using PCA and LEM-MKR.

IV. DISCUSSION
From Figures 3(a) and 3(b), it is possible to observe

that the low dimensional space found by PCA overlaps the
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TABLE I
CLASSIFICATION RESULTS (AVERAGE ACCURACY ± STANDARD DEVIATION FOR 10-FOLD CROSS VALIDATION)

Dataset Classifier Without DR PCA LLE LEM α - LLE C - LLE LEM - MKR
CLP ldc 75.63±06.49 83.66±08.64 83.55±08.66 84.87±04.89 63.41±15.70 91.16±03.71 92.83±04.91

n = 238, p = 147, C = 2, m = 3 knnc 87.39±06.62 81.97±07.30 85.27±07.74 82.77±05.82 66.38±09.31 91.63±04.81 90.33±05.06
PCG ldc Diverges 89.59±02.88 84.51±05.00 82.85±05.76 94.35±04.87 92.69±03.98 92.13±04.28

n = 548, p = 18240, C = 2, m = 15 knnc Diverges 96.53±01.61 88.15±04.27 83.38±03.34 92.90±04.12 93.99±03.63 93.59±04.36
PARKINSONS ldc 77.44±06.48 75.89±04.27 77.84±06.31 74.35±03.29 89.76±05.31 86.73±04.72 88.29±05.90

n = 197, p = 23, C = 2, m = 4 knnc 87.04±07.01 84.11±06.88 78.89±08.73 73.52±09.63 88.18±05.97 86.23±04.60 85.74±07.13
EPILEPSY ldc 20.00±00.00 67.20±04.24 63.60±05.87 66.00±06.04 83.60±04.88 85.60±04.40 90.80±05.18

n = 500, p = 2052, C = 5, m = 5 knnc 94.00±02.83 74.20±05.53 79.60±04.70 72.60±06.11 83.00±09.81 90.20±03.19 92.60±04.90

observations, because it does not consider neither the local
relationships nor the class membership similarities among
samples. Hence, PCA is not able to unfold the underlying
data structure, and its embedding is not suitable to sepa-
rate different classes. Otherwise, LEM-MKR (our approach)
preserves the local geometry of the original space, keeping
away samples of different classes. The above statement can
be explained by the tradeoff between the local similarity and
the class membership matrices, which allows to unfold the
main structure of the data in a space with lower dimension
m than the original input space dimension p (see Table I).

In regard to the attained classification results presented
in Table I, our approach presents, in most of the cases, a
suitable classification accuracy, for both kind of classifiers
ldc and knnc. Therefore, LEM-MKR allows to identify the
nonlinear structure of the input data, finding an embedding
space where a classifier with a simple decision boundary (i.e.,
ldc) can be used. Indeed, it is important to emphasize that
the proposed tradeoff selection avoids the need of a manual
tuning, finding a tradeoff that compensates both the intrinsic
geometry conservation and the separability margin.

Moreover, it can be noticed how traditional PCA, and
unsupervised NLDR algorithms, LLE and LEM, do not attain
reliable classification performances. On the other hand, the
α-LLE algorithm, overall, seems to obtain a high classi-
fication performance, when the technique is used in con-
junction with a nonlinear boundary classifier. Nonetheless,
as the number of classes grows or when the underlying
data structure is more complex, the classification accuracy
strongly diminishes, because of the induced overtraining.
Finally, C-LLE methodology seems to be a good alternative
for classifications tasks. However, the lower performance
in some databases in comparison with our proposal (i.e.,
PARKINSONS and EPILEPSY), can be explained by the
lack of the tuning of the required free parameter, which is
not well defined in the original formulation [4].

V. CONCLUSIONS
A feature extraction methodology was proposed to learn

the underlying data structure of biomedical information.
For such purpose, a manifold learning framework based
on LEM is enhanced by MKR, in order to learn both the
local data structure and the class label relationships among
samples. In addition, we established an scheme for automatic
selection of the required free parameters, based on a tradeoff
between the contribution of the local and the class mem-
bership relationships among observations. Proposed LEM-

MKR minimizes, as well as possible, the local structure and
the class separability representation errors in the embedding
space. Our approach was tested as feature extraction stage to
develop diagnosis support systems for automatic detection of
diseases from biomedical data. Attained results showed how
our methodology unfold the data main structure, mapping the
original high dimensional space (original estimated features)
to an embedding space where simple and straightforward
classification strategies can be used to obtain a suitable
system performance. Moreover, our approach is also a tool
to visually analyze the studied phenomenon by the specialist.
As future work, it should be interesting to test our method-
ology using other kind of similarity/dissimilarity measures,
according to the application of interest.
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