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Abstract—Obstructive Sleep Apnea (OSA) is a respiratory 

disorder with serious consequences that is characterized by 

repetitive cessation of breathing for more than 10s often 

associated with a drop of more than 4% in the blood's Oxygen 

saturation level. The gold standard for OSA diagnosis is full-

night Polysomnography (PSG), which is a time-consuming, 

inconvenient, and costly assessment. On the other hand, our 

team has showed that the analysis of tracheal respiratory 

sounds recorded during wakefulness holds promises to be used 

as a simple and effective tool for screening moderate and severe 

OSA. In this paper, we examine the nonlinear characteristics of 

tracheal breath sounds and the possibility to extract features 

from Higher Order Spectra (HOS) for OSA screening. The 

data used in this study were recorded during wakefulness in 

two body positions, supine and upright, and during mouth and 

nose breathing. We estimated the bispectrum of the sounds in 

each respiratory cycle, calculated the median bifrequencies and 

the energy of the bispectrum, and investigated any statistically 

significant differences between the extracted features in two 

groups of non-OSA and severe OSA data. The differences in 

the features between body positions and nose/mouth breathing 

were also looked at. One-way ANOVA revealed significant 

differences in the features between non-OSA individuals and 

those with severe OSA. The results encourage the use of these 

features in future studies for OSA screening.   

I. INTRODUCTION 

Obstructive Sleep Apnea (OSA) is a respiratory disorder 

with serious health consequences including cardiovascular 

complications, hypertension, and stroke [1]. Recent research 

has also raised the possibility of a causal relationship 

between OSA and type II diabetes [2]. People with OSA 

usually experience fatigue and are unable to maintain 

efficiency throughout the day [3]. Polysomnography (PSG) 

is currently the standard method to diagnose OSA [4]. It is 

resource-intensive and costly. Furthermore, it might not be 

available in urgencies. This has motivated researchers to 

seek non-invasive, portable and less costly methods to 

diagnose OSA. 

Analysis of tracheal breath sounds has been used for OSA 

diagnosis with a comparable accuracy with that of PSG 

when recorded over night [5].  Our team has recently shown 

promising results on the use of spectral features of tracheal 
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breath sounds recorded during wakefulness for screening 

moderate and severe OSA from non-OSA individuals [6].  

Spectral features fail to account for the nonlinear behavior of 

tracheal breath sounds resulting from the turbulence of air in 

the trachea. These features also provide no information on 

the phase-related characteristics of the signals [7]. Higher 

Order Spectra (HOS) analysis reveals and quantifies 

information related not only to the amplitude of the signal, 

but also to its phase. For example, phase coupling, which 

occurs as a result of nonlinear interactions between 

harmonic components, can only be captured using HOS 

features such as the bispectrum [7]. The bispectrum, defined 

as the Fourier transform of the third-order cumulant of a 

process, is a HOS feature which is nonzero for nonlinear 

processes. As with other HOS, the bispectrum contains 

information pertaining to interactions of correlated 

harmonics and is a useful feature to capture and study the 

nonlinearities that arise when the process deviates from a 

purely Gaussian model [7]. Another advantage of using HOS 

is that cumulants in this domain are blind to additive 

Gaussian noise that is recorded along with a non-Gaussian 

signal [7].  

Bispectral analysis has been applied to snoring sounds in 

recent studies [8, 9]; however, it has not yet been used on 

tracheal breath sounds for OSA screening. Since tracheal 

breath sounds can be recorded during wakefulness with 

minimum disruption to a person’s daily routine, screening 

methods based on these sound signals will be less intrusive 

and more accessible than methods based on night-time 

signals such as snoring. As a pilot study, in this paper, we 

have examined the hypothesis that the nonlinear HOS 

features of tracheal breath sounds are significantly different 

between severe OSA and non-OSA individuals. 

II. METHODS 

A. Data 

Tracheal breath sounds used in this study were recorded at 

the Sleep Disorders Clinic at Misericordia Hospital in 

Winnipeg, Canada. Participants were referred for overnight 

PSG, and participated in our study prior to PSG assessment. 

The AHI value for each participant was scored by sleep 

technicians following the PSG. The study was approved by 

the Biomedical Ethics Board of the University of Manitoba 

and also that of Misericordia Hospital. Tracheal breath 

sounds were recorded by a small microphone (Sony ECM-

77B) embedded in a plastic chamber placed over the 

suprasternal notch, and held in place by a double-sided 

adhesive disc. The sounds were digitized at 10240 Hz (14 

bits resolution).   
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For this study, data of participants whose AHI was either 

below 5 (non-OSA) or above 30 (severe OSA) were 

considered. Breath sounds were recorded in two body 

positions of sitting upright and supine. Participants were 

instructed to breathe normally and then deeply for each 

breathing position, and to breathe through the nose and then 

the mouth. At least five breaths were recorded for each 

breathing maneuver. In this paper, we only examined sound 

signals of deep breathing. Table 1 shows the anthropometric 

information of the participants in the study.  

B. Onset Detection 

The signals were filtered by a bandpass filter over 100-2600 

Hz. We used the method outlined in [6] to separate the 

inspiratory and expiratory phases. Selecting the deep 

breathing sound signals from the two breathing maneuvers 

(mouth/nose) in the two postures (supine/upright), and then 

separating inspiratory/expiratory phases resulted in 8 signals 

for each participant.  We then calculated the bispectrum of 

each of the 8 signals as described in the following sections. 

C. Calculation of Bispectrum 

The bispectrum is defined as the Fourier transform of the 

third-order cumulant of a process as follows [7]: 
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where c3(τ1,τ2) is the third-order moment or cumulant, and is 

defined by: 
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We used the conventional direct method of bispectrum 

estimation, which is an approximation of bispectrum for the 

time series with limited available samples [7]. Since the 

bispectrum is symmetric across multiple axes due to the 

symmetric nature of the cumulant, we only considered the 

nonredundant region otherwise known as the principle 

domain [7]. Furthermore, we limited our analysis of the 

bispectrum to the frequencies ranging from 100-2600 Hz in 

every dimension of the bispectrum with a frequency 

resolution of 5Hz. Fig. 1 shows the bispectrum over positive 

values of f1 and f2 for individuals with AHI values of 0 and 

30, respectively, for the mouth/supine/inspiration signal.  

D. Feature Extraction 

The median bifrequencies were calculated along each 

frequency dimension of the nonredundant region of the 

bispectrum for each breath phase, using the following 

method:  

1) The sum of all values of the bispectrum for all 

bifrequencies over the non-redundant region was 

calculated. 

2) The value of f1 was set at the smallest value in the 

nonredundant region and a temporary variable tSum 

was initialized to 0. 

3) The values of the bispectrum for all possible 

bifrequencies (f1, f2) in the non-redundant region were 

added to tSum. 

TABLE I. ANTHROPOMETRIC INFORMATION OF PARTICIPANTS 

Group 
Participant Information 

Number AHI Age BMI 

Non-OSA 79 (34 female) 1.6±1.5 58.6±7.6 30.2±7.3 

Severe OSA 29 (8 female) 72.1±33.6 57.6±12.7 36.8±7.0 

 

 
 

4) If the value of tSum was greater than or equal to half of 

the sum calculated in step 1, then the value of f1 was 

taken as the median frequency for the first dimension. 

Otherwise, f1 was incremented 5Hz (the resolution of 

the bispectrum) and steps 3 and 4 were repeated.  

To estimate f2, a similar algorithm was used, with the only 

difference that the value of f2 was incremented at each step. 

Finally, the values obtained were averaged for each dataset 

for each individual to yield one pair of median bifrequencies 

for each signal. 

As for a second feature, we calculated the energy of the 

bispectrum over equal and non-overlapping subbands in the 

nonredundant region. Specifically, the frequency band of 

100-2600 Hz in each of the f1 and f2 frequency axes was 

divided into 10 equal non-overlapping subbands, each 

extending 250 Hz in frequency. We calculated the bispectral 

energy matrix for each breath phase and took the average 

bispectral energy matrix as the second feature. 

E. Statistical Analysis 

For each of the features, a one way analysis of variance 

(ANOVA) was employed to test whether the extracted 

features were significantly different between the two groups 

 

 
Figure 1. The Bispectrum of tracheal breath sound signals for 

mouth/supine/inspiration of individuals with AHI values of zero (top) 

and 30 (bottom) (drawn on the logarithmic scale) 
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of severe OSA and non-OSA datasets. The ANOVA test was 

also performed for the difference in feature values between 

nose and mouth breathing (value for mouth breathing 

subtracted from the value for nose breathing) and the 

difference between breathing in the supine and upright 

positions. In all statistical tests, a p-value of less than 5% 

was considered as significant. 

III. RESULTS 

The bispectrum was non-zero for all datasets for all 

individuals. This shows that there are nonlinear properties 

resulting from phase relations of the harmonic components 

of the signals that can be captured using HOS [7]. 

The ANOVA test results for the median bifrequencies 

rejected the null hypothesis (that the median bifrequency for 

a certain breathing maneuver for OSA and healthy 

individuals belong to the same population) for a 

considerable number of datasets. Out of the 4 datasets of 

mouth breathing, the null hypothesis was rejected for one 

dataset for median frequency f1 and for three datasets for f2 

(Table II). The ANOVA test results for the difference in 

median frequencies between nose and mouth breathing 

rejected the null hypothesis in all datasets for f1 and in three 

out of the four datasets for f2 (Table III). For the difference 

in median bifrequencies between the supine and upright 

positions, the null hypothesis was rejected only for the 

nose/inspiration dataset.  

As for the energy of the bispectrum between the non-OSA 

and sever OSA groups, the most notable differences existed 

for the mouth/supine/inspiration dataset. Table IV shows the 

number of times the null hypothesis was rejected for each 

subband across all datasets.  

The ANOVA test on the difference in the energy between 

nose and mouth breathing showed significant differences 

(Table V). In all tables pertaining to the energy of 

bispectrum matrices, the number 1 to 10 represent frequency 

bands with a width of 250 Hz from 100Hz to 2600Hz. 

TABLE I.  P-VALUE DERIVED FROM THE ANOVA TEST ON THE MEDIAN 

BIFREQUENCIES BETWEEN NON-OSA AND SEVERE OSA GROUPS 

 Mouth Breathing 

Supine Upright 

Inspiration Expiration Inspiration Expiration 

f1 0.014 0.125 0.230 0.089 

f2 0.010 0.002 0.239 0.012 

Datasets for which the null hypothesis was rejected are shown with a shade of grey. 

 

TABLE II.  P-VALUE DERIVED FROM THE ANOVA TEST ON THE 

DIFFERENCE BETWEEN MEDIAN FREQUENCY F1  BETWEEN NOSE AND MOUTH 

BREATHING AMONG NON-OSA AND SEVERE OSA GROUPS 

 Difference between Nose and Mouth Breathing 

Supine Upright 

Inspiration Expiration Inspiration Expiration 

f1 0.010 0.047 0.007 0.019 

f2 0.068 0.001 0.019 0.024 

Datasets for which the null hypothesis was rejected are shown with a shade of grey. 

TABLE III.  NUMBER OF TIMES THE NULL HYPOTHESIS WAS REJECTED BY 

THE ANOVA TEST ON THE ENERGY OF BISPECTRUM MATRIX FOR ALL 

DATASETS  BETWEEN NON-OSA AND SEVERE OSA GROUPS 

  F1 frequency bands (Hz) 

F
2

 freq
u
en

cy
 b

an
d

s (H
z) 

 1
0
0

-3
5
0

 (1
) 

3
5
0

-6
0
0

 (2
) 

6
0
0

-8
5
0

 (3
) 

8
5
0

-1
1
0

0
 (4

) 

1
1
0
0

-1
3

5
0

 

(5
) 

1
3
5
0

-1
6

0
0

 

(6
) 

1
6
0
0

-1
8

5
0

 

(7
) 

1
8
5
0

-2
1

0
0

 

(8
) 

2
1
0
0

-2
3

5
0

 

(9
) 

2
3
5
0

-2
6

0
0

 

(1
0

) 

(1) 2 0 0 4 3 0 0 2 0 0 

(2)  3 5 3 1 1 0 1 0 0 

(3)   0 1 1 0 0 0 0 0 

(4)    1 4 1 1 0 0 0 

(5)     2 1 1 1 1 0 

(6)      1 0 1 0 0 

(7)       0 0 0 0 

(8)        1 1 0 

(9)         0 0 

(10)          0 

TABLE IV.   P-VALUE DERIVED FROM THE ANOVA TEST ON THE 

DIFFERENCE IN THE ENERGY OF BISPECTRUM MATRIX BETWEE NOSE AND 

MOUTH BREATHING  FOR THE SUPINE/INSPIRATION DATASETS  BETWEEN 

NON-OSA AND SEVERE OSA GROUPS 

  F1 frequency bands 

F
2

 freq
u
en

cy
 b

an
d

s 

 1 2 3 4 5 6 7 8 9 10 

1 0.03 0.34 0.45 0.03 0.02 0.16 0.29 0.15 0.43 0.76 

2  0.11 0.01 0.01 0.00 0.05 0.61 0.57 0.48 0.54 

3   0.04 0.03 0.02 0.32 0.11 0.90 0.18 0.30 

4    0.03 0.04 0.03 0.07 0.61 0.29 0.43 

5     0.00 0.03 0.07 0.51 0.38 0.51 

6      0.06 0.12 0.70 0.70 0.29 

7       0.29 0.75 0.82 0.41 

8        0.19 0.06 0.46 

9         0.06 0.73 

10          0.39 

Cells for which the null hypothesis was rejected are shown with a shade of grey. 

IV. DISCUSSION 

The results of this study indicate that HOS features of the 

tracheal breath sounds recorded during wakefulness have the 

potential to be used for OSA screening. Even though 

previous studies have established a strong connection 

between HOS features of snore sounds and OSA [9, 10], 

there has been very little effort to find a similar connection 

for breath sounds. One study has found that kurtosis of 

breath sounds is a useful feature for OSA screening [6], but 

no previous study has investigated the bispectral features; 

that was investigated in this study. The results of the 

statistical analysis of variance clearly show that HOS 

features capture further differences between non-OSA and 

severe OSA groups. The difference observed in HOS 

features might be due to the narrowing of the airway which 

has been shown to be important in the pathogenesis of OSA 

[11]. We believe that as the airway narrows, the 

nonhomogeneity of the airway walls and tissues becomes 

more apparent; thus, the flow of air in the upper airway can 

no longer be assumed to be laminar. Furthermore, this 

heterogeneity may result in vortices with more than one 

source of oscillation which spectral analysis cannot reveal.  
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It is worth noting that the fact that the estimated bispectrum 

is non-zero does not necessarily mean that the breath sounds 

are non-linear signals. To establish non-linearity of breath 

sounds requires rigorous statistical tests such as the one 

proposed in [12]. However, the complex pathophysiology of 

OSA, along with the results presented in this paper, are good 

reasons to suspect the linearity of tracheal breath sounds and 

warrant further research on the usefulness of HOS features 

for OSA diagnosis. 

The results of the one-way test of ANOVA reveal that 

features are indeed different between non-OSA and severe 

OSA groups. These differences may be due to the 

nonlinearity of tracheal breath sounds and reflect phase 

relationships between correlated harmonics. The most 

promising results for median bifrequencies were obtained 

from the differences in the nose and mouth breathing. In 

healthy subjects, the upper airway resistance has been found 

to be similar between the mouth and nose breathing during 

wakefulness; however, during sleep in supine position, the 

upper airway resistance was much higher while breathing 

through the mouth [13]. The observed differences between 

the nasal and oral breathing sounds were significantly 

different between the non-OSA and severe OSA groups, 

implying that upper airway resistance in the two groups must 

be different depending on the breathing route during 

wakefulness. This observation is congruent with the results 

in [14] who found 50% of their OSA population associated 

with the upper airway resistance syndrome.  

The results of this study are encouraging, and if verified in a 

larger population may shed light on the physiopathology of 

the OSA and also help in OSA diagnosis during 

wakefulness. Nevertheless, since anthropometric parameters 

such as gender, age, height and weight significantly affect 

the tracheal breath sounds [15], we need to have a larger 

dataset including individuals with matched anthropometric 

parameters to re-evaluate the observed differences. 
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