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Abstract— This paper describes a new application of the
recently developed Coefficient of Sample Entropy (CosEn)
measure. This entropy estimator is specially suited for cases
where the length of the time series is extremely short. CosEn
has already been used successfully to characterize and detect
atrial fibrillation, using as few as 12 heartbeats.

We have customized the methodology employed for heartbeat
interval series to blood pressure hypertensive (BPHT) human
records. Little can be found about BPHT records and its
nonlinear regularity analysis. The method described in this
paper provides a good segmentation between control and
pathologic groups, based on the corresponding labeled BPHT
records. The experimental dataset was drawn from the available
records at the Hypertension Unit of the University Hospital of
Mostoles, in Spain. The hypertension related variables studied
were systolic blood pressure (SBP), diastolic blood pressure
(DBP) and mean blood pressure (MBP). The hypothesis test
yielded the following results in each case: acceptance probability
of 0 for SBP, 0.005 for DBP and 0 for MBP. The confidence
intervals for the three variables were nonoverlapping.

I. INTRODUCTION

Biological systems can be considered a manifestation of

complex and nonlinear processes. Such systems exhibit not

only the readily observable stationary or periodic behavior,

but they also usually have a nonpredictable, chaotic, nonlin-

ear or nonstationary behavior [1]. Nonlinear methods based

on entropy computations or data complexity statistics have

become very popular recently in applications related to the

analysis of biological signals due to their good results. Their

capability to unveil hidden nonlinear information embedded

in records has proven very powerful in signal class segmenta-

tion applications. Classical linear methods lack of robustness

or characterization depth in most of these cases [2], [3].
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Spain lvigil.hmtl@salud.madrid.org

7M. Varela–Entrecanales is with the Internal Medicine Service at
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Blood pressure (BP) is considered to be a key parameter

when evaluating the cardiovascular control system of a pa-

tient since essential hypertension (HT) is considered to be a

trigger of a variety of mayor cardiovascular diseases, such as

cerebral stroke or myocardial infarct [4]. BP has been widely

characterized by traditional, linear methods, which assume a

certain degree of stationarity. On the contrary, little can be

found about BP studies with nonlinear entropy methods [1],

[5], [6]. Most of this few studies are based on animal blood

pressure hypertensive (BPHT) records. Additionally, usual

nonlinear methods employed in these cases are correlation

dimension (CD) [1], Lempel–Ziv (LZ) [5] and detrended

fluctuation analysis (DFA) [6]. However, due to the specific

features of BP records, these metrics do not properly fit to

this BP analysis task since a large number of samples are

needed in order to obtain a good entropy estimation [1]. Most

of them require a number of samples in the order of several

hundreds or thousands, whereas a long–term BP record may

contain some 120 samples at most.

In this paper, our interest is focused on human BPHT

records. These data series are usually noninvasively recorded

by means of a digital sphygmomanometer. This technique

termed sphygmomanometry is known to be the most accurate

and noninvasive method for BP data acquisition, although it

is quite uncomfortable for the patient. A cuff surrounding the

arm should previously be inflated until its pressure is higher

than the Systolic Blood Pressure (SBP), and then deinflated

so as to take a measure. During the data acquisition it is

convenient that the patient remains still in a steady state,

such as sitting, relaxed, with the arm straight and immobile

[4]. Owing to such uncomfortability and constraints, long or

continuous BPHT records are not usually possible. There-

fore, in order to enable a nonlinear analysis of such records,

a more robust entropy measure is needed.

An increased BP variability in the different ways it can be

recorded (ambulatory or home) implies a worse prognosis in

several studies. However, as far as we know, a complexity

analysis of these arterial BP measures and its correlation with

a clinical prognosis has not been carried out yet.

Our previous research has proved that there is a progres-

sive loss of complexity from a normality state to illness

in thermo–regulation [7] and in glucoregulation [8], and

such loss entails a worse prognosis. In other works, it has

been observed that there is an inverse correlation between

variability and complexity, and probably both phenomena

are manifestations of the same deterioration process of the

fine control physiological systems. However, a complexity
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analysis offers methods much more objective, sensitive, and

accurate to quantify such deterioration.

A new regularity measure, named coefficient of Sample

Entropy (CosEn), has been proposed recently to evaluate and

detect atrial fibrillation (AF) on very short data records [9].

This measure provides good results over time series contain-

ing only 12 heartbeats. Because of the similar characteristics

between the RR signals considered in [9], and the BPHT

signals analyzed in this work (both signals are short and

nonevenly sampled), the method in [9] was customized and

used to characterize BPHT human records. Our objective

was to assess the capability of CosEn to distinguish between

healthy and pathologic subjects based on the regularity

estimation computed from BP ambulatory records.

II. METHOD

CosEn is based on the estimation of SampEn. However,

this measure depends largely on the value of its parameters

r and m, which is critical specially when dealing with very

short time series. The first step in the direction of reducing

the influence of r was described in [10], where a new

entropy estimate, termed Quadratic Sample Entropy (QSE),

was introduced. This measure enables any r to be used, since

the measured conditional probability is normalized by the

volume of the matching region [9].

The tolerance parameter r can be optimized for each phys-

iological record, for example, to guarantee that a minimum

number of matches is obtained and therefore a confident

entropy estimation is possible [9]. This optimization was

achieved using a matches function (counts the number of

matches below a threshold) to find the optimal r value

for each possible number of them, termed M , and the

corresponding ROC curves to estimate the optimal M .

A. QSE computation

QSE is a measure devised to solve the limitations and pos-

sible pitfalls in the computation and interpretation of Sample

Entropy (SampEn), particularly for short data records where

the number of matches found to compute the conditional

probability is low and limited [10]. QSE is based on the

transformation of this SampEn conditional probability [3] to

a density. This is achieved by normalizing SampEn by the

volume of the matching region, using a term given by 2rm.

Thus, QSE is calculated as:

QSE = SampEn(N,m, r) + log(2r) (1)

where N denotes the record length, m and r are the classical

SampEn input parameters, accounting for the embedded

dimension and tolerance level, respectively. SampEn can

be computed as described in [3] using the source code

implementation available at [11].

B. Coefficient of Sample Entropy (CosEn) computation

Derived from QSE, CosEn, is another entropy estimate

that was first devised and applied to the detection of AF

from RR series. This application is based on the fact that

the mean signal value was found to contribute significantly

and independently to the diagnosis in AF detection. CosEn

is computed similarly as QSE [9]:

CosEn = SampEn(N,m, r)− log(2r)− log(µx) (2)

where µx denotes the mean value of the input signal x, being

the other terms in the expression the same as in (1).

The parameter m was set to 2 in our case, and r was ob-

tained in terms of M for each signal independently. For each

M , ROC curves were calculated, and the area under each

curve was plotted against M . Optimum M for final CosEn

computation was estimated as the one that maximized the

ROC area curve, in order to yield the optimal segmentation.

The details of this optimization process are described next.

1) Tolerance r estimation: The level r was estimated for

each signal. Initially, M was varied from 2 to the maximum

possible number of matches, Mmax. The input to the matches

function [11] was the time series x and the run length m. The

output of this function, modified accordingly to allocate this

optimization process, was the optimal r value for each Nm.

The rationale of this step is to reverse the usual functioning

of matches functions, instead of counting the number of

matches given a tolerance, find the unknown tolerance value

that yields a predefined number of matches. Thus, r value

was set according to:

r(M(n)) = dM(n) + ǫ n = 1, 2, ...,Mmax (3)

where dM(n) denotes the dissimilarity value needed to

achieve M matches, and ǫ accounts for the order of the

smallest difference among dissimilarities:

ǫ = 10⌊log10(dmin)⌋ (4)

dmin = min
k,k 6=n

{|d(n)− d(k)|} (5)

2) ROC curves: The ROC area curves obtained using the

method described above are used to estimate the optimum

M . However, these curves are relatively noisy, and some fil-

tering is needed to obtain such optimum. To this end, moving

average filters of different lengths were considered due to

their simplicity and good results for this task. Specifically,

the time–domain equation of the filter used is:

y(n) =
1

2L+ 1

L
∑

k=−L

y(n− k) (6)

where L accounts for the length in samples of the filter. The

filtering was computed for different lengths, ranging from 5

to 50 in steps of 5 samples.
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3) Optimum M estimation: Finally, the local optimum

M
opt
L for each filtered ROC area curve (RACL) was obtained

as the argument that maximizes such area, namely:

M
opt
L = argmax

n
{RACL(n)} (7)

From all the M
opt
L , a global optimum Mopt had to be

chosen. We used an statistical analysis based on median and

Median Absolute Deviation (MAD) values of M
opt
L due to

their robustness as statistical measures of data dispersion.

M
opt
L optimal values fell within a narrow interval.

Let χ = median(M(k)L), M
opt can be estimated as:

M
opt = median

{

M
opt
L : M ∈ [χ−MAD, χ+MAD]

}

(8)

MAD = median {|M(k)L −median {M(k)L}|} (9)

C. Statistical analysis

CosEn values estimated using (2) were first screened by

means of the Shapiro–Wilks normality test (α=0.05). This

test suits a low number of observations.

Then, if a normal distribution could be assumed, the

Student T-Test was carried out in order to assess the segmen-

tation capability between healthy and pathologic subjects.

Otherwise, the Mann-Whitney U significance test was used

for the same purpose, comparing medians instead.

Confidence intervals were estimated as:

CI = [µ− 2σµ, µ+ 2σµ] (10)

σµ =

√

(
∑

n
i=1

(CosEni(x)−µ)2

n
)

√
n

=
σ√
n

(11)

where µ accounts for the mean and σµ for the standardized

mean error, if time series data were considered to be drawn

from a normal distribution. If the normality test was not

satisfied, these values account for the median and MAD,

respectively. The standardized mean error σµ was computed

as described in (11) and MAD as stated by (9). CosEni

denotes the estimated entropy value for signal i and n

represents the total number of signals of each data group.

III. EXPERIMENTS AND RESULTS

A. Experimental dataset

The 24-hour Ambulatory BP Monitoring (ABPM) read-

ings used in the experiments were provided by the Hyper-

tension Unit, Hospital Universitario de Móstoles, Madrid

(Spain). These data series were acquired and recorded using

a SpaceLabs 90207 automated noninvasive oscillometric

device. This device was programmed to register BP at

20–minute intervals during the daytime period and at 30–

minute intervals during the nighttime period. These periods

might change if a sample was considered invalid by the

device, since an additional reading had then to be recorded

automatically 5 minutes later.

Most of the records were acquired on working days.

Patients were instructed to maintain their usual activities,

and to keep their arm extended and immobile at the time of

each cuff inflation to avoid outliers in the data.

However, a further screening of the records was conducted

before being included in the experimental dataset. The noisy

data points that despite the resampling function of the

device and the patient care were present in the record,

were removed. After this screening, the dataset contained

signals with lengths ranging from 52 samples minimum to

63 samples maximum. For this study, the signal lengths were

set to the maximum length of the shortest signal, 52 samples,

removing the spare data at the end of the longer records.

The resulting experimental dataset contains 61 data

records. Severe hypertensive patients account for 31 of these

records. These patients were on anti–hypertensive drug treat-

ment, and were attended regularly at the Hypertension Unit

mentioned above. The remaining 30 data records correspond

to subjects with a suspected diagnosis of essential hyperten-

sion. Since no drug-treatment was given to them, they were

considered as control patients. Each record contains systolic

BP (SBP), diastolic BP (DBP), mean BP (MBP) and cardiac

frequency (Fc) information. Table I show mean and standard

deviation for values for each variable and data group.

TABLE I

STATISTICAL CHARACTERISTICS (µ± 2σ) OF THE DATABASE.

SBP DBP MBP FC

Ctrl. (mmHg) 120.11 ± 32.04 73.26 ± 25.70 89.15 ± 25.12 72.15 ± 28.00
Patho. (mmHg) 148.16 ± 43.20 84.04 ± 36.86 106.66 ± 34.92 71.55 ± 26.02

B. Results

The algorithm introduced in Sec.II was assessed using the

database described in sec.III-A. The segmentation results

obtained in terms of CosEn CI are shown in Fig.1. The

statistical segmentation results are shown in table II.

SBP, DBP and FC come from normal distributions, as

the Shapiro–Wilks p–Value was higher than 0.05 (the null

hypothesis was accepted). MBPs p–Value indicated that MBP

data can not be considered to match a normal distribution.

Thus, MBP data had to be characterized by its median and

MAD values instead of mean and mean standardized error.

Fig.1 shows that segmentation for SBP, DBP and MPB is

straightforward, as the confidence intervals do not overlap,

while no discrimination can be obtained between control

and pathologic groups in terms of FC . This visual results

are quantitatively demonstrated with the results presented in

table II. The T-test p–Value is lower than 0.05 for SBP, DBP

and MBP but higher for Fc, thus leading to overlapping CI.

Finally, it can be observed that MBP regularity value

seems more influenced by SBP rather than DBP, since they

exhibit similar CI for both groups.

IV. DISCUSSION

Entropy metrics such as SampEn, Approximate Entropy

(ApEn), and Detrended Fluctuation Analysis (DFA) were
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Fig. 1. Confidence intervals (CI) for systolic (SBP), diastolic (DBP), mean
BP (MBP) and cardiac frequency (FC ) for both data groups, control (Ctrl.)
and hypertensive (Patho.).

TABLE II

STATISTICAL RESULTS FOR COSEN SEGMENTATION.

SBP DBP MBP FC

SW pValue 0.053 0.165 0.022 0.868
T-test pValue 0 0.005 0 0.749

CI Ctrl. [–6.451, –6.397] [–4.207, –4.130] [–6.274, –6.230] [–2.547, –2.355]
CI Patho. [–6.669, –6.603] [–4.393, –4.251] [–6.467, –6.394] [–2.596, –2.357]

computed over the experimental dataset described, but no

confident segmentation results were obtained, not even with

a parametrization study. Therefore, other measures had to

be studied. These measures should cope with short record

lengths and provide confident estimations when the number

of samples in the records is very low. QSE and CosEn

measures were considered because of their good results when

using data records as short as 12 samples.

The CosEn method proposed in [9] was originally devised

to detect AF on short RR data records. The RR records are

known to be nonlinear, nonstationary, discrete and unevenly

sampled data signals. Similarly, the BPHT data records

used in this work are characterized by it nonstationarity,

nonlinearity, short record length and unevenly sampled too,

which enabled us to adapt and apply CosEn in this BP study.

The results confirmed that CosEn is a suitable entropy es-

timator for BPHT records. Graphical results depicted in Fig.1

show that SBP, DBP and MBP are relevant variables when

referring to such records. CI are nonoverlapping in the three

mentioned variables, being able then to distinguish between

control and pathologic patient data. Graphical information is

supported by the analytical results given in table II, where the

nonoverlapping CI are quantified and the Student T-Test null

hypothesis acceptance probability is lower than 0.05, which

shows that there exists a difference between mean values of

the distributions for each data group.

V. CONCLUSION

A method to detect AF from RR record analysis, described

in [9], has been customized to study the segmentation

and detection of chronic and non–well controlled essential

hypertension, using human BPHT records.

Entropy computation from human BPHT records is a

challenging task. Most entropy estimators require a relatively

large number of samples to provide confident estimations.

Recording long length BPHT signals is not possible using

current ambulatory methods and devices due to the uncom-

fortable data acquisition procedure. Most of the work over

BPHT records has been done with classical linear methods.

This paper proposes an extension of the CosEn method

to analyze and discern among BPHT data records, based

on the similarity between human BPHT records and RR

signal records. The method proposed and optimized for AF

detection over RR signals has been extended to segment and

discern between control and pathologic data from 24h am-

bulatory BP records with a maximum length of 52 samples.

The resulting method has proven to be able to obtain a

good segmentation between control and pathologic BPHT

short data records, as it provides nonoverlapping CI and very

low student T-test null hypothesis acceptance probability.
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