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Abstract— Point-process models have been recognized as a
distinguished tool for the instantaneous assessment of heartbeat
dynamics. Although not thoroughly linked to the physiology,
nonlinear models also yield a more accurate quantification of
cardiovascular control dynamics. Here, we propose a Laguerre
expansion of the linear and nonlinear Wiener-Volterra kernels
in order to account for the nonlinear and non-gaussian infor-
mation contained in the ECG-derived heartbeat series while
using a reduced number of parameters. Within an Inverse-
Gaussian probability model, up to quadratic nonlinearities were
considered to continuously estimate the dynamic spectrum and
bispectrum. Results performed on 10 subjects undergoing a
stand-up protocol show that this novel methodology improves
on the algorithmic performances and, at the same time, more
accurately characterizes sympatho-vagal changes to posture.

I. INTRODUCTION

A point-process is a stochastic process able to contin-

uously characterize the intrinsic probabilistic structure of

discrete events. It has been successful applied to study a very

wide range of studies, analyzing data such as earthquake oc-

currences [1], traffic modeling [2], and neural spiking activity

[3]. In applying point process models for the assessment

of heartbeat dynamics, instantaneous heart rate (HR) and

heart rate variability (HRV) measures were defined based on

an inverse-gaussian probability distribution, representing the

probability to have a new event (i.e. R-wave) given autore-

gressive history dependence on the previous beat intervals

[4], [5]. From a physiological point-of-view, this choice is

motivated by a “Wiener process with drift” model of the

rising mechanism of the cardiac membrane potential, where

a the cardiac contraction is initiated when a threshold is

reached [4]. Algorithmic performance, as well as goodness-

of-fit improvement, were also considered in defining the

best statistical model [6]. Alongside the autoregressive linear

combination of the present and past RR intervals, nonlinear

terms were also included to define the first moment (mean)

of the distribution by using up to second-order nonlinearities

of the Wiener-Volterra expansion [7]. Results demonstrated

a robust characterization of the inherent heartbeat nonlinear

dynamics [7]. The major limitation of these models was

that long-term memory and high order nonlinearities were
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Fig. 1. Block diagram of the models derivation

usually discarded due to the complexity of the estimation

process (i.e. large number of needed parameters) and to

the long time windows that such characterization would

require. Here, we illustrate a novel model based on the

use of the discrete-time Laguerre expansions of the Wiener-

Volterra autoregressive kernels. This choice results in long-

term memory and lowest number of parameters [8]. In

addition, all previous advantages, such as the high resolution

HRV indices without applying any interpolation method,

are retained. This approach was first suggested by Wiener

in his pivotal monograph [9] and, nowadays, it is widely

adopted in system identification [8]. In the next section, the

derivation of the novel Laguerre-based point-process linear

(ARL) and nonlinear (NARL) models are reported. Both

models were compared, in terms of linear (spectral) and

nonlinear (bispectral) analysis, with the related current state-

of-the-art, represented by the point-process based linear (AR)

and the nonlinear (NAR) models.

II. THE HEARTBEAT INTERVAL POINT-PROCESS

NONLINEAR MODEL

The general elements behind the considered model’s

derivation are shown in Fig. 1. We refer to Barbieri et.al. [4]

for the complete derivation of the AR model and to Chen et

al. [7] for the NAR model. Starting from the surface ECG

signal, sampled at 500 Hz and observed within the interval

t ∈ (0, T ], we define {uj}
J
j=1 as the ordered set of R-wave

events, and RRj = uj−uj−1 > 0, as the jth R–R interval.

It is also possible to define the counting process N(t) =
max{k : uk ≤ t} and its differential, dN(t), which is 1 when
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there is an event (the ventricular contraction), or 0 otherwise.

Similarly, a left continuous function Ñ(t) can be defined

as Ñ(t) = limτ→ t− N(τ) = max{k : uk < t}. Assum-

ing history dependence, we use a physiologically-plausible,

continuous Inverse-Gaussian distribution f(t|Ht, ξ(t)) as the

probability distribution of the waiting time t−uj until the next

R-wave event appears [4]:

f(t|Ht, ξ(t)) =

[
ξ0(t)

2π(t− uj)3

] 1
2

× exp

{
−
1

2

ξ0(t)[t− uj − µRR(t,Ht, ξ(t))]
2

µRR(t,Ht, ξ(t))2(t− uj)

}
(1)

with j = Ñ(t) the index of the previous R-wave event

before time t, Ht = (uj ,RRj ,RRj−1, ...,RRj−M+1), ξ(t)
the vector of the time-varing parameters, and ξ0(t) > 0
the shape parameter of the inverse Gaussian distribution. To

define the first-moment statistic (mean) of the distribution,

µRR(t,Ht, ξ(t)), let us consider the Taylor expansion of a

general Nonlinear Autoregressive Model (NAR):

y(k) = γ0 +
M∑

i=1

γ1(i) y(k − i) +

∞∑

n=2

M∑

i1=1

· · ·

M∑

in=1

γn(i1, . . . , in)

n∏

j=1

y(k − ij) + ǫ(k) . (2)

where ǫ(k) are independent, identically distributed Gaussian

random variables. For further derivation, we also define the

extended kernels γ′
1(i) and γ′

2(i, j) as:

γ′

1(i) =

{
1, if i = 0

−γ1(i) if 1 ≤ i ≤ M
(3)

γ′

2(i, j) =

{
0, if ij = 0 ∧ i+ j ≤ M

−γ2(i, j) if 1 ≤ i ≤ M ∧ 1 ≤ j ≤ M
. (4)

We can now consider the Laguerre expansions of the NAR

kernels up to the second order, i.e. γ0, γ1(i), and γ2(i, j)
(the quadratic term γ2(i, j) is assumed to be symmetric).

This choice of expanding the kernels reduces the number of

unknown parameters that need be estimated [8]. In addition,

the regression is performed on the derivative RR series, in

order to improve the achievement of stationarity within the

sliding time window W = 90 sec [10]. Thus, the obtained

Nonlinear Autoregressive with Laguerre expansion (NARL)

model can be written as:

µRR(t,Ht, ξ(t)) = RRÑ(t) + g0(t) +

p∑

i=0

g1(i, t) li(k)+

q∑

i=0

q∑

j=0

g2(i, j, t) li(k) lj(k) . (5)

where

li(t) =

Ñ(t)∑

n=1

φi(n)(RRÑ(t)−n − RRÑ(t)−n−1) (6)

is the output of the Laguerre filters and

φi(n) = α
n−i

2 (1− α)
1
2

i∑

j=0

(−1)j
(
k

j

)(
i

j

)
αi−j(1− α)j

is the ith-order discrete time orthonormal Laguerre function,

with (n ≥ 0) and α the discrete-time Laguerre parameter.

When α is chosen in the open interval (0, 1), it determines

the rate of exponential asymptotic decline of these functions

while for α = 0 the NARL model corresponds, apart for

the sign, to the NAR model. The ARL model is obtained

by dropping off the nonlinear term of (5). By substituting

(6) in (5), one can obtain for a given NARL model the

corresponding NAR model with degree of nonlinearity 2 and

long-term memory [8]:

µRR(t,Ht, ξ(t)) = RRÑ(t) + γ0

+

∞∑

i=1

γ1(i, t) (RRÑ(t)−i − RRÑ(t)−i−1)

+
∞∑

i=1

∞∑

j=1

γ2(i, j, t) (RRÑ(t)−i − RRÑ(t)−i−1)

× (RRÑ(t)−j − RRÑ(t)−j−1) (7)

From (7) it is straightforward to note that, even with an

equal degree of nonlinearity, the NARL model retains

information about an infinite amount of past samples.

Furthermore, the model’s number of parameters depends

on the number of the Laguerre functions considered rather

than on the number of regressions on the past observation.

Moreover, µRR(t,Ht, ξ(t)) is still defined in continuous

time, so it is possible to obtain an instantaneous R–R mean

estimate at a very fine timescale (with an arbitrarily small

bin size ∆), without interpolation between the arrival times

of two beats. We use the Newton-Raphson procedure to

maximize the local log-likelihood defined in [4] in order

to estimate the unknown time-varying parameter set ξ(t) =
[ξ0(t), g0(t), g1(0, t), ..., g1(p, t), g2(0, 0, t), ..., g2(i, j, t)].
The optimal order {p, q} is estimated by means of the

Akaike Information Criterion (AIC) and of the point process

model goodness-of-fit applied to a subset of the data [4].

Model goodness-of-fit is based on the Kolmogorov-Smirnov

(KS) test and associated KS statistics [4]. Autocorrelation

plots are also considered to test the independence of the

model-transformed intervals [4]. Once the order {p, q} is

determined, the initial NARL coefficients are estimated by

the method of least squares.

A. Quantitative Tools

Once the model’s parameters are derived, a few additional

steps are required to calculate the quantitative tools, i.e.

the instantaneous autospectrum and bispectrum. The general

scheme is shown in Fig. 2. For instance, starting from the

NARL model’s coefficients, the following transformations

are needed:

• from the fitted coefficients gn(...) of the NARL model

(5), use the Laguerre deconvolution [8] to obtain the

NAR kernels γn(...);
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Fig. 2. Block diagram of the quantitative tools derivation

• from γn(...) find γ′
n(...);

• compute the Fourier transforms Γ′
n(...) of the kernels

γ′
n(...);

• compute the Wiener-Volterra Input-Output kernels.

Starting from the Fourier transforms of the extended NAR

kernels, Γ′
1(f1) and Γ′

2(f1, f2), the required Wiener-Volterra

Input-Output kernels of order p, Hp(f1, . . . , fn), can be

estimated by using the following recursive relationships [11]:

H1(f) =
1

Γ′
1(f)

(8)

H2(f1, f2) =−
Γ′
2(f1, f2)

Γ′
1(f1)Γ

′
1(f2)

H1(f1 + f2) (9)

A more general formulation of these relationship can also

be found in [11]. Given the Γ′
1(f1) term, we can compute

the time-varying parametric (linear) autospectrum [12] of the

derivative series:

Q(f, t) = Sxx(f, t)H1(f, t)H1(−f, t) (10)

where Sxx(f, t) = σ2
RR. Referring to the mentioned deriva-

tive regression, the time-varying parametric autospectrum

of the RR intervals is given by multiplying its derivative

spectrum Q(f, t) by the quantity 2(1 − cos(ω)) [10]. By

integrating (10) in each frequency band, we can compute

the index within the very low frequency (VLF = 0.01-0.05

Hz), low frequency (LF = 0.05-0.15 Hz), and high frequency

(HF = 0.15-0.5 Hz) ranges.

Moreover, given the Γ′
2(f1, f2) term, it is possible to

define the instantaneous bispectrum as follows [13]:

Bis(f1, f2, t) = 2H2(f1 + f2,−f2, t)H1(−f1 − f2, t)

×H1(f2, t)Sxx(f1+f2, t)Sxx(f2, t)+2H2(f1+f2,−f1, t)

×H1(−f1 − f2, t)H1(f1, t)Sxx(f1 + f2, t)Sxx(f1, t)

+2H2(−f1,−f2, t)H1(f1, t)H1(f2, t)×Sxx(f1, t)Sxx(f2, t)

The dynamic bispectrum is an important tool for evaluating

the instantaneous presence of non-linearity in time series

[14]. Since the bispectrum presents several symmetry proper-

ties that divide the (f1, f2) plane in eight symmetric zones,

for a real signal the bispectrum is uniquely defined by its

values in the triangular region of computation Ω, 0 ≤ f1 ≤
f2 ≤ f1 + f2 ≤ 1. Through bispectral analysis it is possible

to further evaluate the nonlinerar sympatho-vagal interactions

TABLE I

RESULTS OF THE COMPARISON AMONG THE AR, ARL, NAR AND

NARL MODELS ON THE STAND-UP DATA.

Statistical
Model Rest Stand-Up P-Value AUC

Indices

µRR(ms)

AR 906.17±116.21 774.48±80.41 <0.02 0.744

ARL 914.94±122.70 773.46±80.67 <0.02 0.754

NAR 908.05±117.03 771.94±75.23 <0.03 0.744

NARL 917.39±124.72 770.04±75.29 <0.02 0.761

σRR(ms)

AR 19.69±9.37 15.84±5.06 >0.05 0.588

ARL 19.72±9.37 16.57±4.89 >0.05 0.568

NAR 20.05±9.39 16.19±6.59 >0.05 0.550

NARL 20.62±9.45 15.66±5.20 >0.05 0.560

LF (ms2)

AR 328.54±260.34 410.03±305.24 >0.05 0.503

ARL 569.52±347.75 581.42±422.77 >0.05 0.509

NAR 392.38±258.09 310.99±307.15 >0.05 0.487

NARL 345.76±261.93 415.40±338.17 >0.05 0.566

HF (ms2)

AR 179.39±149.43 76.13±51.63 >0.05 0.656

ARL 194.05±159.26 120.44±65.97 >0.05 0.625

NAR 162.61±107.35 59.07±37.05 >0.05 0.678

NARL 204.19±169.47 91.28±58.65 >0.05 0.658

LF/HF.

AR 1.37±0.78 2.58±2.41 >0.05 0.625

ARL 1.64±1.09 2.77±2.07 >0.05 0.612

NAR 1.23±0.97 3.39±3.13 >0.05 0.567

NARL 0.83±0.73 2.52 ±2.32 >0.05 0.628

LL(106)
NAR 118.80±383.58 138.03±98.67 >0.05 0.735

NARL 163.89±146.24 162.21±135.41 >0.05 0.641

LH(106)
NAR 313.77±219.27 403.60±308.62 >0.05 0.465

NARL 326.78±272.38 137.66±88.89 >0.05 0.641

HH(106)
NAR 163.62±149.16 61.36±52.40 >0.05 0.687

NARL 768.73±663.26 267.62±220.08 <0.03 0.714

P-values are obtained by rank-sum test between the Rest and Tilt epochs.
Lines in bold indicate an improvement in terms of AUC results given by

the NARL model.

by integrating |B(f1, f2)| in the appropriate frequency bands.

Specifically, we can evaluate:

LL(t) =

0.15
ˆ

f1=0+

0.15
ˆ

f2=0+

Bis(f1, f2, t)df1df2 (11)

LH(t) =

0.15
ˆ

f1=0+

0.4
ˆ

f2=0.15+

Bis(f1, f2, t)df1df2 (12)

HH(t) =

0.4
ˆ

f1=0.15+

0.4
ˆ

f2=0.15+

Bis(f1, f2, t)df1df2 (13)

B. Experimental Results

We compared the proposed Laguerre-based models in a

study of the RR series of 10 healthy subjects when perform-

ing a stand-up protocol. The study, fully described in [4],

was conducted at the Massachusetts Institute of Technology

(MIT) General Clinical Research Center (GCRC). The AIC

analysis indicated p ∈ {8, 9, 10} as the optimal AR order and

p ∈ {6, 7, 8} and q ∈ {1, 2} as optimal NAR orders in almost

all cases. Likewise, we obtained p ∈ {4, ..., 8} and p ∈
{3, 4} and q ∈ {2, 3} for the ARL and the NARL models,

respectively. A representative tracking result is shown in Fig.

3. We evaluated the statistical differences between the supine

and upright epochs of the rest and the stand-up protocol.

The difference was expressed in terms of p-values from a
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Fig. 3. Instantaneous heartbeat statistics computed from a representative
subject (N. 1) of the stand-up protocol using the NARL model. In the
first panel, the estimated µRR(t) is superimposed on the recorded R-R
series. Alongside, the instantaneous heartbeat Power spectra evaluated in
Low frequency (LF), High frequency (HF), their ratio (LF/HF) and three
bispectral measures are reported.

non-parametric rank-sum test, under the null hypothesis that

the medians of the two sample groups are equal. Given the

rank-sum statistics, we also calculated the Area Under the

receiver operating characteristic Curve (AUC). The results

are shown in Table I. The LF and HF power as well as

their ratio were calculated from all of the models, whereas

the nonlinear frequency interactions LL, LH and HH were

estimated from the two nonlinear models (i.e. NAR and

NARL). All features were calculated instantaneously with

a 5 ms temporal resolution. For the statistical analysis we

considered the average time-varying values over each of

the computed indices along the considered protocol. The

confidence interval of all of the linear features is quite

similar among the different models, thus demonstrating that

the inclusion of nonlinear terms in the model does not

affect the linear part of the signal. It is worth to notice that

even when there is no statistical difference between the rest

and stand-up conditions, the NARL model almost always

provides the best results in term of AUC. Moreover, the

high inter-subject variability leads to no statistical difference

between the two considered states (Rest vs. Stand-up) for all

considered indices, with the exception of the HH parameter

evaluated by means of the NARL model (p<0.03).

III. CONCLUSIONS

We presented a comparison among four point-process

models used for instantaneous heartbeat assessment. The pre-

vious developed linear and nonlinear autoregressive models

(namely AR and NAR) along with respective novel Laguerre-

expanded versions (namely ARL and NARL) were tested

to assess sympatho-vagal dynamics in ten healthy volun-

teers performing a stand-up protocol. According to the AIC

evaluations, the models using Laguerre expansion required a

reduced number of regressors. In addition, they gave better

results in terms of AUC in six of the eight considered

features. Among them, the HH measure coming from the

nonlinear coefficients of the NARL model was the only one

able to discriminate the rest (supine) phases with respect to

relative stand-up. It is possible to conclude that assessment

of heartbeat dynamics is more accurately performed when

a nonlinear model is adopted. Furthermore, the inclusion of

the orthonormal basis of Laguerre functions improves the

performance and reduces the number of regressors. Future

works will focus on the comparison of the performance with

other time-variant algorithms, e.g. the Swami’s algorithm for

bispectral analysis.
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