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Abstract—Sensory-motor functions have been repeatedly 

linked to both cognitive and physical functions.  One common 

test of sensory-motor performance frequently used for 

neuropsychological evaluation is the Halstead-Reitan finger 

tapping test (FTT).  While this test has been normed and used 

extensively, the underlying sensory, motor and cognitive 

processes mediating tapping behavior during the test are not 

well understood.  As a first step towards investigating the 

behavioral aspects manifested by these processes, we describe a 

state-space model for finger tapping during the FTT.  This 

state-space model exploits quasiperiodicity to decompose 

tapping into a set of time-varying states corresponding to the 

instantaneous amplitude of the finger oscillation, the 

instantaneous frequency (or speed) of tapping, and a phase that 

keeps track of the current finger position during the cycle.  We 

evaluate the model by showing a good fit between estimated and 

actual measurements, and outline an experiment that will relate 

features from the model to cognitive function. 

I. INTRODUCTION 

Motor function is an important predictor of both 
cognitive and physical function.  Motor slowing in elderly 
patients has been shown to precede cognitive impairment[1-
3] and  has also been linked to cognitive function[4, 5] and 
risk of future disability[6, 7].  Measured levels of motor 
dysfunction have been used to differentiate between normal 
aging and different levels of dementia[8, 9], and excessive 
motor speed asymmetry has been seen in patients diagnosed 
with probable Alzheimer’s disease[10]. 

One specific task that is often used to assess motor 
function is finger tapping. While many tapping tasks exist, 
one of the most commonly used for neuropsychological 
evaluations and diagnoses[11] is the Halstead-Reitan Finger 
Tapping Test (FTT)[12].  This test is scored as the average 
number of times a patient depresses a key with his or her 
index finger (each hand is tested separately) in a series of 
trials on a manual finger-tapping device, where each trial 
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lasts 10 seconds.  The test nominally consists of 5 tapping 
trials, but will continue until either the counts on all trials are 
within five of each other or 10 trials are administered [13]. 

Despite the popularity and wide-spread use of the FTT, 
the underlying phenomena of tapping during this test are not 
well understood.  As a comprehensive understanding of 
tapping behavior during the test will allow more precise 
inferences about the cognitive processes that regulate and 
mediate tapping, it is increasingly important to study and 
understand this behavior.  Recent research supports this 
assertion by demonstrating that motor phenomena other than 
absolute speed – such as variability and accuracy - are also 
predictive of future cognitive decline[14], are impaired in 
early stage dementia[15], and are related to cognition[16].  
In terms of tapping, empirical observations demonstrate 
motor change on multiple time scales during the course of 
the FTT.  For example, tapping speed and range of finger 
movement can change both on a tap-to-tap basis and more 
persistently over time, perhaps due to fatigue or distraction.  
None of these features of tapping are captured when average 
number of taps across trials is the only recorded measure of 
performance, but – consistent with the research cited above - 
these behavioral aspects may contain important information 
about the cognitive processes mediating tapping behavior. 

In an effort to better understand tapping behavior and the 
cognitive processes underlying this behavior, we 
instrumented a manual finger-tapper with a potentiometer 
and an ADC that samples a voltage proportional to the angle 
of the tapping lever, which is in turn proportional to the 
position of the lever.  We then developed a state-space 
model of tapping during the FTT that relates measurements 
of the lever angle into an easily interpretable set of 
behavioral characteristics (states) of the finger, such as 
tapping frequency and the amplitude of finger oscillation.   
As will be shown, this set of behavioral characteristics 
allows study of both short term fluctuations in tapping 
behavior – such as sample-to-sample or tap-to-tap variability 
– and persistent changes that may be related to phenomena 
such as fatigue or learning.  In this paper, we describe the 
state-space model in detail and present a preliminary 
validation of the model on data collected from two subjects 
who each participated in four trials of the FTT. 

II. METHODS 

A.  Manual Finger Tapper 

 The manual finger-tapper was built using a Veeder-Root 

brand counter (model 0727235-002) as an exact replica of 
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the Reitan Neuropsychology Laboratory manual tapper 

(www.reitanlabs.com).  A potentiometer was installed on the 

shaft of the tapping lever with one wiper arm connected to a 

USB-1208FS DAQ (Measurement Computing, Norton, MA) 

to sample the voltage at a frequency of 512 Hz.  The 

resulting measurements were voltages proportional to the 

angle of the tapping lever.  Fig. 1 shows the manual finger 

tapper used in this experiment during an FTT trial. 

B.  Subjects, Data Collection, and Analysis 

 Two healthy subjects, a 32 year old male and a 24 year old 

female, were recruited for the preliminary evaluation of the 

model.  Both subjects were right handed.  Each subject was 

instructed to tap the manual lever of the finger tapper as 

quickly as possible with their dominant hand for 15 seconds.  

We used a longer duration than with the normal FTT 

administration as the estimation approach used takes time to 

“lock-on” and track the model states, and to have a longer 

data record to test the model.  A short break was given 

between each trial lasting between 15 seconds and 1 minute.  

Before estimation, the measured voltage was normalized to a 

unitless 0/1 scale to aid in interpretation, where 0/1 

correspond to the bottom/top lever positions, respectively. 

 To estimate the model for each FTT trial for both subjects, 

we used a variant of the Unscented Kalman Filter (UKF).  

To validate performance, we calculated the mean-square 

error (MSE), maximum absolute error, and average absolute 

error between the measurements and the model predictions 

of the measurements.  The first two seconds of data were 

excluded from these calculations to allow the filter to “lock-

on” and track the states. 

III. STATE SPACE MODEL 

We developed the model based on the assumption that 

finger tapping is quasi-periodic.  This is driven primarily by 

the fact that tapping during the FTT is a repetitive action 

constrained by the position of the tapping lever.  

Specifically, the physical behavior of tapping on the manual 

tapper is a series of flexions and extensions of the finger that 

cause corresponding depressions and releases of the tapping 

lever.  As the lever will only move along a certain trajectory, 

the flexions and extensions must be done in approximately 

the same way to perform the test.  Based on this assumption, 

we adapt a commonly used measurement model of quasi-

periodic behavior referred to as the rectangular model[17]. 

The rectangular model is a Fourier expansion that relates the 

current measurement of an assumed quasi-periodic signal, yn, 

to a set of parameters (the current system states) as: 
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Figure 1.  Manual finger tapper board instrumented to sample voltage 

proportional to lever angle. 

 

phase at time n, with n=-1 indicating the initial phase, ωi is 
the angular frequency at time i, and T is the sampling time. 

Before defining the tapping model, we describe one other 
important phenomenon that must be modeled.  Specifically, 
we measure a voltage proportional to the position of the 
finger tapping lever. The distinction of measuring the 
position of the lever (as opposed to the finger) is important 
because the tapping lever has a finite range of motion and 
thus measurement of the position of the finger is truncated on 
both sides of its range.  During a complete tapping cycle, the 
finger leaves the lever at the end of the release phase and 
remains out of contact momentarily as it finishes the release 
phase and starts the depression phase.  At the end of the 
depression phase the finger is obstructed from moving lower 
than the bottom position of the lever.  We model this device 
limitation directly as a truncation of the measurement. 

Adapting (1) and (2), and including the truncation 

mentioned above, we propose the following state-space 

model for finger tapping: 
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In (3), the measurement equation, u and l are the upper and 
lower thresholds of the device based on the finite range of 

the finger tapper lever, y is the mean voltage measured over 

the test, An is a time-varying amplitude, θn is the phase at 
time n as defined in (2), and w is a Gaussian distributed 
additive noise source with variance R.  Here we have 
specialized (1) to the case of a single, time varying cosine, 
where cosine was chosen over sine because the starting 
position of the lever is at the top when the FTT begins.  A 
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single time varying cosine is used for the sake of simplicity 
as it seems to be sufficient for modeling tapping behavior 
during the FTT, as we demonstrate below.  The states in (4) 
come directly from the necessary parameters to describe the 
measurement model (3), in light of (1) and (2).  Specifically, 
we have An, the time varying amplitude, ωn, the time varying 
frequency, θn, the phase at time n, and the vi as three additive 
Gaussian noise sources with diagonal covariance matrix Q.  
In (4), An and ωn have been modeled as random walks.  

Two of the three state variables in (4) have nice physical 
interpretations that we will exploit when making behavioral 

inferences from the model.  The time varying frequency, n , 

models the instantaneous rate (speed) of tapping, and can be 
used to derive measures of regularity related to tapping rate. 

The time varying amplitude,
nA  describes the instantaneous 

size of the finger movement with larger values of 

nA corresponding to larger sized oscillations of the finger.  

The time varying phase,
n  is not used directly to make 

inferences from the model, but keeps track of the current 
phase of the finger during tapping. 

Before presenting the results of the model validation, we 
briefly discuss estimation of the model parameters.  In 
general, state space models are estimated with a recursive 
approximation to the minimum mean square error (MMSE) 
estimator.  For the well known case of a linear model with 
additive Gaussian noise, the exact solution is the celebrated 
Kalman Filter [18].  For nonlinearity in the measurement or 
state equations, approximations to the MMSE solution are 
employed.  Since our measurement equation is nonlinear and 
is not everywhere differentiable, we used a variant of the 
unscented Kalman Filter (UKF) to generate the results 
discussed below.  The UKF is a derivative free 
approximation to the MMSE solution based on propagating a 
deterministic approximation of the prior distribution through 
the nonlinear dynamics to estimate the posterior distribution, 
and hence to form an MMSE estimate at each time step[19]. 
However, the UKF is just one of the available options for 
estimating a nonlinear state-space model; a particle filter or 
one of the other variants of the sigma point Kalman filters 
could also be used.  As the UKF is well understood and 
described in the literature ([19], for example), and because a 
particular estimator is not central to the research described 
here, we omit a description of the complete UKF algorithm. 

IV. RESULTS AND DISCUSSION 

The results of applying the UKF to the FTT model are 
shown in Table I.  The small MSE of less than 0.001 on all 
trials suggests that the model provides a reasonable 
representation for the observed data.  The maximum absolute 
error is not greater than 0.19 across trials.  This is on the 
large size compared to the tapping signal range of 1, but the 
average absolute error of less than 0.025 indicates that errors 
this large are uncommon, and that most are less than 3% of 
the signal range. 

Fig. 2 shows what an estimated measurement signal looks 
like compared to the true measured values.  This plot 

TABLE I 

Performance results of fitting the model to each of the four FTT trials 

administered to each subject.  

Subject Trial MSE  

Maximum 

Absolute 

Error  

Average 

Absolute 

Error  

1 1 0.00087 0.158 0.020 

1 2 0.00094 0.186 0.021 

1 3 0.00096 0.173 0.021 

1 4 0.00096 0.184 0.022 

2 1 0.00063 0.122 0.018 

2 2 0.00059 0.121 0.018 

2 3 0.00071 0.129 0.019 

2 4 0.00082 0.154 0.020 

 

visually demonstrates the closeness of fit between 
measurements and estimates evaluated quantitatively in table 
I.  The top half of the plot shows the results for an entire 15 
second FTT trial from one of the subjects, while the bottom 
plot shows a close-up of a half-second period in the middle 
of the test. As can be seen in both halves of the plot, the 
model accurately predicts the measurements. 

Now that we have demonstrated the ability of the model to 
accurately generate the phenomena observed during tapping, 
we discuss the interpretation of the state estimates.  Fig. 3 
shows the state estimates over time for the middle 5 seconds 
of the same data shown in fig. 2, where only 5 seconds is 
shown for ease of visualization.  The instantaneous 
amplitude estimates are shown in the top plot of fig. 3.  It can 
be seen that during this trial, the subject did not tap with 
constant amplitude.  Instead small fluctuations over time are 
clearly visible in this plot, including a dip in the size of 
finger movement slightly before the 7.5 second mark and 
slower trends of increasing and decreasing amplitudes over 
the course of the test.  The middle plot of fig. 3 shows the 
instantaneous frequency of tapping plotted against time.  
What is striking here is the persistent decline in frequency 
over time.  This shows that not only did the subject not tap at 
a constant rate, but this subject slowed consistently over the 
course of the test.  While not shown completely in the plot, 
this subject began tapping at an initial speed of 5.5 
taps/second, and ended the trial tapping at only 5 
taps/second.  This is a loss of over 9% in tapping speed 
during the full 15 seconds of the test, perhaps due to short-
term fatigue.  None of these short or long term fluctuations is 
captured by the current method of scoring the FTT as an 
average number of taps across trials. 

One shortcoming of this work is the lack of patient data 
used.  While our intent was only to describe the model and 
show that it captures characteristics of tapping not measured 
by the current scoring method of the FTT, the usefulness of 
the model lies in its ability to help us study and make 
inferences about cognition.  We are currently designing an 
experiment to explore the relationship between cognitive 
function in the elderly and features of tapping derived from 
the data using the proposed state-space model.  Based on the 
research cited in the Introduction, we expect that we will be 
able to make much more precise inferences about cognitive 
function than are currently available with the FTT. 
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Figure 2. Estimated measurements (gray) and actual measured values 

(black) for one trial from one subject of the whole FTT (top) and a half-

second of the test (bottom). 

 

V. CONCLUSION 

In this paper, we described a novel state-space model for 
finger tapping during the FTT.  We showed how this model 
can track changes in behavioral characteristics of tapping – 
size of the finger oscillation and frequency, or speed, of 
tapping – not measured during the traditional FTT.  Based 
on recent research, we expect that these behavioral 
characteristics will allow more precise inferences about 
cognition, and we outlined a planned experiment that will 
test this hypothesis as future work. 

ACKNOWLEDGEMENT 

The authors would like to thank John Hunt for the design 
and fabrication of the manual tapper. 

REFERENCES 

 

[1] O. Beauchet, G. Allali, G. Berrut, C. Hommet, V. Dubost, and 

F. Assal, "Gait analysis in demented subjects: Interests and 

perspectives," Neuropsychiatr Dis Treat, vol. 4, pp. 155-60, 

2008. 

[2] R. Camicioli, D. Howieson, B. Oken, G. Sexton, and J. Kaye, 

"Motor slowing precedes cognitive impairment in the oldest 

old," Neurology, vol. 50, pp. 1496-8, 1998. 

[3] R. Camicioli, Y. Wang, C. Powell, A. Mitnitski, and K. 

Rockwood, "Gait and posture impairment, parkinsonism and 

cognitive decline in older people," J Neural Transm, vol. 114, 

pp. 1355-61, 2007. 

[4] A. L. Fitzpatrick, C. K. Buchanan, R. L. Nahin, S. T. Dekosky, 

H. H. Atkinson, M. C. Carlson, and J. D. Williamson, 

"Associations of gait speed and other measures of physical 

function with cognition in a healthy cohort of elderly persons," J 

Gerontol A Biol Sci Med Sci, vol. 62, pp. 1244-51, 2007. 

[5] R. Holtzer, J. Verghese, X. Xue, and R. B. Lipton, "Cognitive 

processes related to gait velocity: results from the Einstein 

Aging Study," Neuropsychology, vol. 20, pp. 215-23, 2006. 

[6] J. M. Guralnik, L. Ferrucci, C. F. Pieper, S. G. Leveille, K. S. 

Markides, G. V. Ostir, S. Studenski, L. F. Berkman, and R. B. 

Wallace, "Lower extremity function and subsequent disability: 

consistency across studies, predictive models, and value of gait 

speed alone compared with the short physical performance  

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

0.7

0.8

A
(t

)

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
30

32

34


(t

) 
(r

a
d
/s

)

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
0

5

10


(t

) 
(r

a
d
)

time(s)

State estimates

 

Figure 3. Estimates of the amplitude (top), frequency (middle), and phase 

(bottom) versus time for the middle five seconds of the data shown in fig. 2. 

 

   battery," J Gerontol A Biol Sci Med Sci, vol. 55, pp. M221-31, 

2000. 

[7] J. M. Guralnik, L. Ferrucci, E. M. Simonsick, M. E. Salive, and 

R. B. Wallace, "Lower-extremity function in persons over the 

age of 70 years as a predictor of subsequent disability," N Engl J 

Med, vol. 332, pp. 556-61, 1995. 

[8] A. Kluger, J. G. Gianutsos, J. Golomb, S. H. Ferris, A. E. 

George, E. Franssen, and B. Reisberg, "Patterns of motor 

impairement in normal aging, mild cognitive decline, and early 

Alzheimer's disease," J Gerontol B Psychol Sci Soc Sci, vol. 52, 

pp. P28-39, 1997. 

[9] A. Kluger, J. G. Gianutsos, J. Golomb, S. H. Ferris, and B. 

Reisberg, "Motor/psychomotor dysfunction in normal aging, 

mild cognitive decline, and early Alzheimer's disease: diagnostic 

and differential diagnostic features," Int Psychogeriatr, vol. 9 

Suppl 1, pp. 307-16; discussion 317-21, 1997. 

[10] P. J. Massman and R. S. Doody, "Hemispheric asymmetry in 

Alzheimer's disease is apparent in motor functioning," J Clin 

Exp Neuropsychol, vol. 18, pp. 110-21, 1996. 

[11] T. Horowitz, P. Schatz, and D. Chute, "Trends in 

Neuropsychological Test Usage," Archives of Clinical 

Neuropsychlogy, vol. 12, pp. 338-339, 1997. 

[12] R. M. Reitan, Manual for Administration of 

Neuropsychological Test Batteries for Adults and Children. 

Tucson, Arizona: Reitan Neuropsychology Laboratory, 1979. 

[13] E. Strauss, E. M. S. Sherman, and O. Spreen, A Compendium of 

Neuropsychological Tests: Administration, Norms, and 

Commentary, 3 ed: Oxford University Press, 2006. 

[14] A. A. Bielak, D. F. Hultsch, E. Strauss, S. W. Macdonald, and 

M. A. Hunter, "Intraindividual variability in reaction time 

predicts cognitive outcomes 5 years later," Neuropsychology, 

vol. 24, pp. 731-41, 2010. 

[15] G. Muller, S. Weisbrod, and F. Klingberg, "Finger Tapping 

Frequency and Accuracy Are Decreased in Early Stage Primary 

Degenerative Dementia," Dementia, vol. 2, pp. 169-172, 1991. 

[16] A. A. Bielak, D. F. Hultsch, E. Strauss, S. W. MacDonald, and 

M. A. Hunter, "Intraindividual variability is related to cognitive 

change in older adults: evidence for within-person coupling," 

Psychol Aging, vol. 25, pp. 575-86, 2010. 

[17] P. J. Parker and B. D. O. Anderson, " Frequency tracking of 

nonsinusoidal periodic signals in noise" Signal Processing, vol. 

20, pp. 127-152, 1990. 

[18] R. Kalman, "A New Approach to Linear Filtering and Prediction 

Problems," Journal of Basic Engineering, vol. 82, pp. 35-45, 

1960. 

[19] E. A. Wan and R. van der Merwe, "The Unscented Kalman 

Filter," in Kalman Filtering and Neural Networks, S. Haykin, 

Ed.: Wiley-Interscience, 2001, pp. 220-278. 

 

24


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

