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Abstract— This paper introduces a novel methodology able
to provide time varying estimates of the Lyapunov Spectrum
within a point process framework. The algorithm is applied
to ECG-derived data to characterize heartbeat nonlinear dy-
namics by using a cubic autoregressive point process model.
Estimation of the model parameters is ensured by the La-
guerre expansion of the Wiener-Volterra kernels along with
a maximum local log-likelihood procedure. In addition to the
instantaneous Lyapunov exponents, as well as indices related to
higher order dynamic polyspectra, our method is also able to
provide all the instantaneous time domain and frequency do-
main measures of instantaneous heart rate (HR) and heart rate
variability (HRV) previously considered. Experimental results
show that our method is able to track complex cardiovascular
control dynamics during fast transitional gravitational changes.

I. INTRODUCTION

Physiological systems are often considered having nonlin-

ear behavior. Due to the complexity of the sinus node activity

modulation mechanisms, the study of heartbeat variations

has been regarded by many scientists as highly suitable

for application of computational nonlinear techniques. It

has been shown that the electrical properties of the hu-

man heart undergo many complex transitions as important

quantifiers of complexity of cardiovascular control in normal

and diseased states [1]–[3]. Heart rate variability (HRV) has

been the subject of intense investigation using a wide range

of methodologies including time-domain, frequency-domain,

geometric, and nonlinear methods (see [4], [5] for reviews).

The Lyapunov exponents (LEs) [6] have been particularly

proven to be a useful tool for the characterization of complex

dynamics in a nonlinear system. They were first defined by

Lyapunov [6] in order to study the stability of nonstationary

solutions of ordinary differential equations (ODEs), and for

more than fifty years they have been extensively studied in

many other disciplines. Specifically, they refer to the average

exponential rates of divergence or convergence of neigh-

boring trajectories in phase space. In a stable deterministic

nonlinear system with no stochastic inputs, a positive LE

reflects sensitive dependence to initial conditions and can be
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taken as a definition of a chaotic system [7]. Nevertheless, a

small amount of noise in a limit cycle oscillation could yield

a positive LE if the trajectory has regions with large slopes.

To this extent, we prefer not to address the issue related on

the chaotic behavior of HRV, and rather follow the approach

suggested by Chon et al. [8] and, later, by Armoundas et

al. [9], suggesting that physiological control systems such

as cardiovascular regulation are neither purely chaotic nor

stochastic, but rather both. This concept is in agreement with

current physiological knowledge, since the normal HRV is

the output of a nonlinear deterministic system (the pacemaker

cells of sinus node) being forced by a high-dimensional

input (the activity in the nerves innervating the sinus node).

Recently, point process theory has been used for modeling

human heartbeats [10]–[14]. The point process framework

primarily defines the probability of having a heartbeat event

at each moment in time. A parametric formulation of the

probability function allows for a systematic, parsimonious

estimation of the parameter vector in a recursive way and at

any desired time resolution. Instantaneous indices can then

be derived from the parameters in order to quantify important

features as related to cardiovascular control dynamics. In this

work, we applied this approach to estimate the instantaneous

values of the LEs by fitting the model to the observed data

and applying the Fast Orthogonal Search (FOS) algorithm

[15] followed by an estimation of the LEs. In order to

retain most of the past information during LEs tracking,

we have expanded the NAR kernels with the Laguerre

functions [16] to devise a novel nonlinear autoregressive

Laguerre (NARL) model. This method reduces the number

of unknown parameters that need be estimated and ensures

a good estimation even with short tracking time windows.

II. THE HEARTBEAT INTERVAL POINT-PROCESS

NONLINEAR MODEL

Let us consider the Taylor expansion of a Nonlinear

Autoregressive Model (NAR):

y(n) = γ0 +

M∑

i=1

γ1(i) y(n− i) +

∞∑

K=1

M∑

i1=1

· · ·
M∑

iK=1

γK(i1, . . . , iK)
K∏

j=1

y(n− ij) + ǫ(n) .

(1)

where ǫ(n) are independent, identically distributed Gaussian

random variables. We represent the nonlinear physiological

system by taking into account up to the cubic nonlinear term,
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i.e. γ0, γ1(i), γ2(i, j), and γ3(i, j, k) where the quadratic and

the cubic kernels are assumed to be permutation invariant.

This choice of a third order NAR system retains an important

part of the non-linearity of the system and gives robustness

against the presence of measurement noise in the data [8].

We use this framework to model the derivative RR series.

Let (0, T ] denote the observation interval and 0 ≤ u1 <

· · · < uk < uk+1 < · · · < uK ≤ T the times of the events,

in our case R peaks detected from the ECG. For t ∈ (0, T ],
let N(t) = max{k : uk ≤ t} be the sample path of the

associated counting process. Let define also a left continuous

function Ñ(t) = limτ→ t− N(τ) = max{k : uk < t}.

Let RRj = uj−uj−1 > 0 denote the jth R–R interval, or

equivalently, the waiting time until the next R-wave event.

This allows us to write the instantaneous mean RR as:

µRR(t,Ht, ξ(t)) = RR
Ñ(t)−1 + γ0 +

M∑

i=1

γ1(i, t)∆RRi

+

M∑

i=1

M∑

j=1

γ2(i, j, t)∆RRi ∆RRj

+
M∑

i=1

M∑

j=1

M∑

k=1

γ3(i, j, k, t)∆RRi ∆RRj∆RRk + ǫ(t) (2)

where ∆RRh = (RR
Ñ(t)−h

−RR
Ñ(t)−h−1). The choice of

the derivative series improves the achievement of stationarity

within the sliding time window W (in this work we have

chosen W = 90 sec.) [17].

We used the Laguerre functions [16] to expand the kernels

and reduce the number of unknown parameters in (2) that

need be estimated. The jth-order discrete time orthonormal

Laguerre function is defined as follows:

φj(n) = α
n−j

2 (1− α)
1
2

j∑

i=0

(−1)i
(
n

i

)(
j

i

)
αj−i(1− α)i,

where α is the discrete-time Laguerre parameter (0 < α < 1)

which determines the rate of exponential asymptotic decline

of these functions, and n ≥ 0. Thus, given the Laguerre

function, φj(n), and the input signal, RR
Ñ(t), the ith-order

Laguerre filter output is:

li(t) =

Ñ(t)∑

n=1

φi(n)(RRÑ(t)−n
− RR

Ñ(t)−n−1) (3)

The nonlinear Autoregressive Laguerre (NARL) model is

devised by using the Laguerre expansion of the kernels,

defining the instantaneous RR mean as:

µRR(t,Ht, ξ(t)) = g0(t) +
P∑

i=0

g1(i, t) li(t)+

Q∑

i=0

Q∑

j=0

g2(i, j, t) li(t) lj(t)+

K∑

i=0

K∑

j=0

K∑

k=0

g3(i, j, k, t) li(t) lj(t)lk(t) . (4)

After fitting the NARL model, the corresponding NAR

representation can be found substituting (3) in (4).

Assuming history dependence, the probability distribution

of the waiting time t−uj until the next R-wave event follows

an inverse Gaussian model:

f(t|Ht, ξ(t)) =

[
ξ0(t)

2π(t− uj)3

] 1
2

× exp

{
−
1

2

ξ0(t)[t− uj − µRR(t,Ht, ξ(t))]
2

µRR(t,Ht, ξ(t))2(t− uj)

}
(5)

where j = Ñ(t) is the index of the previous

R-wave event occurred before time t, Ht =
(uj ,RRj ,RRj−1, ...,RRj−M+1), ξ(t) is the vector of

the time-varing parameters, µRR(t,Ht, ξ(t)) represents

the first-moment statistic (mean) of the distribution, and

ξ0(t) = θ > 0 denotes the shape parameter of the

inverse Gaussian distribution. By definition, f(t|Ht, ξ(t))
is characterized at each moment in time, at the beat as

well as in-between beats. The use of an inverse Gaussian

distribution to characterize the RR intervals occurrences

is motivated both physiologically (the integrate-and-fire

initiating the cardiac contraction [11]) and by goodness-

of-fit comparisons [12]. Given the proposed parametric

model, the nonlinear indices of the HR and HRV will be

defined as a time-varying function of the parameters ξ(t) =
[θ(t), g0(t), g1(0, t), ..., g1(P, t), g2(0, 0, t), ..., g2(Q,Q, t),
g3(0, 0, 0, t), ..., g3(K,K,K, t)]. Concerning the parameter

estimation, a local maximum likelihood method [11] using

a sliding window of duration W is used to estimate the

unknown time-varying parameter set ξ(t). The proper order

{P,Q,K} for the proposed NARL model was determined

according to the Akaike Information Criterion (AIC)

by fitting a subset of the data using a local likelihood

method [11], [18]. The goodness-of-fit of the point process

model is based on the KS test [11], [19]. Autocorrelation

plots are also considered to test the independence of the

model-transformed intervals [11].

III. LYAPUNOV EXPONENTS ESTIMATION

The Lyapunov exponent of a real valued function f(t)
defined for t > 0 is defined as:

λ = lim sup
t→∞

1

t
log (|f(t)|) (6)

More specifically, let us consider a n-dimensional linear

system in the form yi = Y (t)pi, where Y (t) is a fun-

damental solution matrix with Y (0) orthogonal, and {pi}
is an orthonormal basis of R

n. Then, the corresponding

λi are straightforward defined. When the sum of the λi is

minimized, the orthonormal basis {pi} is called “normal”

and the λi are called the Lyapunov exponents [20]. One of

the key theoretical tools for determining Lyapunov exponents

is the continuous QR factorization of Y (t) [21], [22]:

Y (t) = Q(t)R(t) (7)
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where Q(t) is orthogonal and R(t) is upper triangular with

positive diagonal elements Rii, 1 ≤ i ≤ n, leading to an

easier formulation of the LEs, i.e. [20]–[22]:

λi = lim
t→∞

1

t
log ‖Y (t)pi‖

= lim
t→∞

1

t
log ‖R(t)pi‖ = lim

t→∞

1

t
log ‖Rii(t)‖ . (8)

The NAR model (2) can be rewritten in an M -dimensional

state space canonical representation:

r(1)n = r
(2)
n−1

...
...

...

r(M−1)
n = r

(M)
n−1

r(M)
n = F

(
r
(M)
n−1, r

(M−1)
n−1 , · · · , r

(2)
n−1, r

(1)
n−1

)

where F (·) directly arises from (2). The matrix Y (t) in (7)

corresponds to the Jacobian of this system [9]:

J(n) =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 1
∂F

∂r(1)
∂F

∂r(2)
∂F

∂r(3)
∂F

∂r(4)
· · · ∂F

∂r(M)




.

As described above, by evaluating the Jacobian over the time

series, it is possible to determine the LE by means of the QR

decomposition:

J(1)Q(0) = Q(1) R(1)

J(2)Q(1) = Q(2) R(2)

· · ·

J(n)Q(n−1) = Q(n) R(n)

· · ·

This decomposition is unique except in the case of zero

diagonal elements. Then the LE exponents λi are given by

λi =
1

τH

H−1∑

j=0

lnR(j)ii (9)

where H is the available number of matrices within the local

likelihood window of duration W , and τ the sampling time

step. The estimation of the LEs is performed at each time t

from the corresponding time-varying vector of parameters,

ξ(t). This provides us with a time-varying vector, λi(t),
able to track the Lyapunov spectrum in continuous time. We

set forth the first LE, λ1(t), as the instantaneous dominant

Lyapunov exponent (IDLE).

IV. EXPERIMENTAL RESULTS

In order to validate the proposed algorithms’ performance

on real physiological dynamics, we have considered an

experimental RR datasets which was fully described in [11].

Physiological variables were recorded from 10 healthy sub-

jects whose cardiovascular and autonomic regulation were

Fig. 1. (Left) Instantaneous heartbeat statistics computed from a represen-
tative subject using the cubic NARL model. On the top panel, the estimated
µRR(t) is superimposed on the recorded RR series. On the bottom panel,
the corresponding IDLE dynamics are reported. (Right) IDLE dynamics
averaged for all 10 subjects. The vertical red line indicates the transition
from the supine to the upright position.

studied using a tilt-table protocol. Subjects were first placed

horizontally in a supine position, with restraints used to

secure them at the waist, arms, and hands. Then, they were

tilted from the horizontal to the vertical position and returned

to the horizontal position. Each subject performed six tilt

sessions remaining in each tilt state for 3 min. The protocol

lasted 55–75 min (3300–4500 s). A single-lead ECG was

continuously recorded for each subject during the study, and

the RR intervals were extracted using a curve length-based

QRS detection algorithm [23]. The nonlinearity test [24]

applied to the RR series showed that the level of nonlinearity

of the considered RR intervals is significant for all but one of

the considered subjects (see Table I). The performance of the

proposed NARL model was measured by the KS distance:

the smaller the KS distance, the better the model fit. It can be

observed that the NARL always shows a good model fit, with

a KS distance smaller than 0.06 in all cases. A representative

IDLE identification is shown in Fig. 1. The relative KS

plots and the autocorrelation function of the residuals are

also reported in Fig. 2 As shown in the representative case

(Fig. 1), after a 30s transient dynamic the IDLE sharply

decreases to negative values (<-0.1) and stabilizes at around

-0.1 along the sympathetic driven compensatory action to

the gravitational stimulus. The significant decrease of the

IDLE to negative values is confirmed by group statistics, as

indicated by the time-varying average in the right panel of

Fig.1. Statistical analysis by means of the non-parametric

rank-sum test confirms a significative difference between the

’rest’ and the ’fast-tilt’ epochs (p < 0.001).

V. DISCUSSION AND CONCLUSION

We present a novel methodology for the characterization

of heartbeat nonlinear dynamics by means of continuous
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Fig. 2. KS plot (Left) and Autocorrelation plot (Right) of the NARL model
computed for one representative subjects (subject 1). The dashed lines in
all plots indicate the 95% confidence bounds

TABLE I

MEAN AND SD OF DLE FOR THE FAST TILT-TABLE EXPERIMENTAL

DATASET.

Subject P-Value KS dist. Rest Tilt

1 0.032 0.0458 0.0518 ± 0.0227 -0.1165 ± 0.0326

2 0.034 0.0603 0.2226 ± 0.0988 0.0075 ± 0.0515

3 < 1e−8 0.0355 -0.0222 ± 0.0662 -0.0313 ± 0.0574

4 0.030 0.0227 0.0649 ± 0.0785 0.0084 ± 0.0365

5 0.022 0.0451 -0.0137 ± 0.0595 -0.0388 ± 0.0226

6 0.002 0.0409 -0.0007 ± 0.0786 -0.0362 ± 0.0303

7 0.002 0.0458 0.0969 ± 0.0406 -0.0258 ± 0.1049

8 0.076 0.0408 0.0093 + 0.0518 -0.0612 + 0.0375

9 < 1e−6 0.0571 0.0058 + 0.0394 -0.0042 + 0.0145

10 < 1e−8 0.0572 0.2662 + 0.1708 0.0384 + 0.1653
P-values are obtained from the nonlinearity test.

estimation of the Lyapunov Spectrum within a point process

paradigm. The use of the discrete Laguerre expansions of

a cubic autoregressive Wiener-Volterra model gives several

advantages, such as long-term memory, lower number of

parameters, and improved goodness of fit. Once the model

parameters are estimated by means of a maximum log-

likelihood procedure, the LE is computed by means of the

QR factorization. In this work we focus on the instantaneous

dominant Lyapunov exponent (IDLE). Our experimental

results demonstrate that the proposed point process model

is able to clearly follow the transient dynamics and to char-

acterize the time-varying inherent nonlinearity of the system.

In all the subjects, in fact, we found a significant reduction

of the IDLE index after tilt. Accordingly, the inference

performed on the entire population showed prominent signif-

icance. This outcome is in agreement with previous findings

that point at a remarkable presence of complex nonlinear

heartbeat dynamics during rest states, amplified under vagal

predominance and buffered after sympathetic-driven shifts.

Given these findings and the strong mathematical foundation

of our model, future works are aimed at further testing our

novel measures on a wide range of experimental settings and

at better understanding the physiological interpretation of our

instantaneous nonlinear assessment.
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