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Abstract— Heart rate variability (HRV) is one of the promis-
ing directions for a simple and noninvasive way for obstructive
sleep apnea syndrome detection (OSA). The interaction between
the sympathetic and parasympathetic systems on the HRV
recordings, gives rise to several non-stationary components
added to the signal. Aiming to improve the classifier accuracy
for obstructive sleep apnoea detection, the use of more appro-
priated techniques for leading with non–stationarity and mixed
dynamics, are needed. This work aims at searching a convenient
training strategy of combining the feature set to be further fed
in to the classifier, which should take into consideration the
different dynamics in the HRV signal. Therefore, a set of the
short-time features, extracted from a given HRV time-varying
decomposition, and selected by spectral splitting is considered.
Additionally, three methods of projection are used: none,
simple, and multivariate. Finally, the different approaches are
tested and compared, using k-nn and support vector machines
(SVM) classifiers. Attained results show that using continuous
wavelet transform with short–time features and multivariate
projection, followed by a SVM classifier, allow to obtain a
suitable OSA detection.
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I. INTRODUCTION

The obstructive sleep apnea syndrome (OSA) is a com-
mon sleep disorder, characterized by an obstruction in the
airflow. To perform an OSA diagnosis, detection of repetitive
episodes of apnea and hypopnea during sleep is carried
out, mostly, by attended overnight polysomnography in
a sleep laboratory. The main disadvantage of a standard
polysomnography test is the large amount of information
required to be analyzed [1], [2]. One of the promising
directions for a simple, less costly, noninvasive screening
method for OSA detection is provided by an analysis based
on the heart rate variability (HRV) [3]. The interaction
between the sympathetic and parasympathetic systems on
the HRV recordings, gives rise to several non-stationary
components added to the signal [4].

Aiming at finding the informative features in the HRV
signal for OSA diagnosis, some authors have used different
approaches. The time–frequency (t–f ) representations has
been also proposed, planned to determine the energy distri-
bution along the frequency axis at each time instant, to inves-
tigate the time–variant properties of the spectral parameters
during either transient physiological or pathological episodes
[5]. In this line of analysis, the use of relevant and non–
redundant dynamic features is presented in [6] based on the
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Short Time Fourier Transform (STFT) and a linear variant
of the Continuous Wavelet Transform (CWT); nevertheless,
there are some normal t–f maps whose waveform are similar
to the pathological ones, and vice versa; so, the spatial
distribution of the energy in each sub–band is not clear. In
[7], a spectral splitting is proposed for stochastic features
extraction based on the STFT; different relevance measures
are proved for boundaries selection. However, the dynamic of
the HRV signal is so complex that it is necessary to develop
a robust methodology, from the decomposition of the signal
to the classifier, handling properly this dynamics, and thus,
improving the performed accuracy by a given classifier. This
study proposes a convenient training strategy of combining
the feature set to be further fed in to the classifier, which
should take into consideration the different dynamics in the
HRV signal.

The rest of this paper is organized as follows: first, the
signal decomposition is introduced, then, the methodology
for stochastic features is explained. Lastly, the effectiveness
of each decomposition is illustrated for the OSA detection
using a k-nearest neighbors (k-nn), and support vector ma-
chines (SVM) classifiers, followed by a discussion of the
results.

II. MATERIALS AND METHODS
A. Enhanced HRV Representation

a) Time–Scale and Time–Frequency Decompositions:
The signal decomposition through continuous wavelet can be
expressed in two dimensions, as follows [8]:

x(t) =
∫ ∫

SSS(a,b)φ(t,a,b)
dadb

a2 , (1)

where SSS(a,b) are the coefficients of the continuous wavelet,
a is scale factor, b is the position factor, and φ(t,a,b) is the
mother wavelet. The CWT becomes a convenient time–scale
representation when Morlet is chosen as the mother wavelet
due to the similitude with the HRV biosignal.

On the other hand, the commonly used time–frequency
representation calculated by Short Time Fourier Transform
introduces a time localization concept by using a tapering
window function, w(t− τ), (being τ the shifting factor) of
short duration going along the studied signal, x(t), with the
window length remaining constant, namely:

x(t)w(t− τ) =
1

2π

∫
SSS(τ,ω)φ(t,ω)dω, (2)

where φ(t,ω) = e jωt is the basis and SSS(τ,ω) are the decom-
position coefficients.

The coefficient matrix SSS of enhanced representations de-
scribing HRV signal dynamics are the scalogram, in case of
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CWT, and spectrogram for STFT; both of them, respectively,
defined as:

SSS(t,ω) =

∣∣∣∣∫T
x(τ)w(τ− t)e− jωtdτ

∣∣∣∣2 (3)

SSS(a,b) =
∫

T

1√
a

x(t)φ ∗(t,a,b)dt, (4)

where φ ∗(t,a,b) is the conjugated mother wavelet.

B. Spectral Splitting upon Enhanced Representations

To extract the set of band-pass feature vectors, the sub–
band boundaries are to be determined, which in the concrete
case are estimated by introducing a filter–type measure of
relevance to evaluate the whole enhanced representation
(either spectrogram or scalogram), as proposed in [7]. Since
each extracted feature vector may hold a different amount
of useful information for OSA detection, the proposed
relevance–based splitting scheme emphasizes the most rele-
vant sub–bands. That is, the more relevant the set of spectral
components {sss f (t)} of a given sub–band the more important
the derived stochastic feature. The following unsupervised
measure of time–variant relevance is assessed [6]:

ρρρ(SSS;τ) = [χ(1) · · · χ(τ) · · · χ(pT )]>, (5)

where χ(τ) = E {|λ 2
j v j(τ)|}, {λ j : j = 1, . . . ,q} is the set of

most relevant eigenvalues of matrix SSS, and scalar v j(τ) is the
respective element at τ moment, and τ = 1, . . . , pT indexes
each one of the relevance values computed for the whole
time–variant data set. Notation E {·} stands for expectation
operator.

To determine distinctly the relevance related to each one
of the stochastic variables, Eq. (5) can be reallocated to the
relevance matrix, [ρρρ1(SSS; t) · · ·ρρρ f (SSS; t) · · ·ρρρ∆F(SSS; t)]>, where
each row ρρρ f (SSS; t) = [χ(( f − 1)T + 1) . . .χ(t) . . .χ( f T )] ∈
RT×1 that is a sectioned version of vector ρρρ(SSS;τ) plainly
holds the contribution of the sss f (t) stochastic feature along
the fixed moments of time. To measure the contribution of
each spectral component, a simple average is accomplished,
i.e., ρ f (sss f ) = E {ρρρ f (SSS;τ) : ∀τ}. Because of high level of
correlation existing between each pair of adjacent spectral
components {sss f ,sss f+1}, the main assumption is that the
minimum values of their measured contribution should be
considered as the boundaries of the spectral sub–bands. Each
assessed frequency or scale sub–band from end to end along
the time domain holds the boundary of a single stochastic
feature. In turn, each vector feature is attained by filter bank
modeling. For the sake of simplicity, in this study the set of
Cepstral Coefficients (CC) is estimated, as proposed in [7].

C. Training Feature Representation

Since each i−extracted stochastic feature is a vector xxxi ∈
R1×T , a proper feature set representation within training
framework should be carried out. It is expected that the
dynamic behavior of each narrow–band stochastic process
should remain clearly slow. In fact, time–variant feature
vectors of lower orders, which correspond to lower spectral
bandwidths and that are assumed to carried out most of the

information, are expected to behave slowly enough along
the time axis so that usually imposed stationary restrictions
on short–term estimations should work out better than if
computing over the raw input signal. On this regard, several
methods of representation can be used, among others the
following are considered:

– A simple projection into a single real-valued escalar,
i.e.,

yi = E {xxxi : ∀t ∈ T}, yi ∈ R (6)

– A multivariate projection into a reduced latent vec-
tor. Because of high computational cost of stochastic
feature-based training, dimension reduction of the input
space is carried out by means of a time–evolving version
of the standard Principal Component Analysis (PCA),
as follows:

yyyi = PCA{xxxi}, yyyi ∈ R1×τ ,τ ≤ T (7)

– The raw extracted vector is to be fed into the classifier,

yyyi = xxxi, yyyi ∈ R1×T , (8)

This work uses a couple of clustering-based classifiers:
the k-nn, for which classification is grounded on how close
observation falls to the cluster centroid, and SVM, where
clusters are hyperplanes segregating one region from another.

III. EXPERIMENTAL SETUP

The proposed training methodology using short–time fea-
tures for OSA discrimination is divided into three steps:
i) Computation of enhanced representation, ii) Dynamic
features estimation by spectral splitting, iii) Dimension re-
duction and classification.

A. Database

This collection holds M = 70 electrocardiographic record-
ings from PhysioNet, each one including a set of reference
annotations added every minute of the recording indicating
either the presence or absence of apnoea during each segment
of time. The recordings were subdivided in three groups:
apneic patients, with more than 100 min in apnea, borderline
patients, with total apnea duration more than 5 and less than
99 min and control or normal patients, with less than 5 min
in apnea. From the database, 25 recordings were used as a
training set for the classification algorithms. A second group
with 25 recordings was used as a test set to measure the
performance of the algorithms, as considered in [9].

B. Computation of Enhanced Representations

Parameter tuning for a considered TFR is achieved by
the procedure developed for biosignals, discussed in [9].
the STFT–based quadratic spectrogram is computed by slid-
ing Hamming windows for the following set of estimation
parameters: 32.5 ms processing window length, 50% of
overlapping, and 512 frequency bins.

Regarding to CWT alternative, the respective time–scale
representation is performed by using Morlet wavelet mother
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function that is likely to be an efficient means for HRV stud-
ies [10]. Based on the dominant frequency components of the
underlying HRV signal, the number of WT decomposition
levels is chosen within the interval [2−512], where the value
2 is regarded to the highest assumed frequency value while
value of 512 reflects the lowest frequency.

C. Dynamic Feature Extraction by Spectral Splitting

Figure 1 shows the relevance map of the t–f distribution.
Table I shows the selected frequency bands. So, computed
relevance maps of HRV representations reveal a large dif-
ference in terms of dynamic behavior between sub–bands.
Generally, the stochastic variability contribution of every
one of the stationary spectral components, should remain
constant throughout the time axis. In this regard, the sub-
bands do not entirely hold the stationary assumption. Former
relevance matrix patterns stochastic variability of spectral
components with some lack of uniformity. From the above
observations, one may confirm the difference between both
HRV bands of interest in terms of stochastic properties.
Because the amount of information obtained by the relevance
maps, the underlying bands with similar stochastic behavior
are clustered through spectral slitting. It must be noted that
because of easier medical interpretation, the splitting over t–f
maps is carried out separately for each one of the two bands
of interest (LF and HF), as recommended in [1], [7].

TABLE I
FREQUENCY BANDS SELECTION

Band [Hz] Selected Frequency Sub–Bands [Hz]
LF 0.04−0.06,0.06−0.08,0.8−0.15
HF 0.15−0.21,0.21−0.250.25−0.32,0.32−0.50

The splitting of the scale axis is achieved in a similar
way, using the relevance obtained for each scale set. Figure
2 shows the relevance map of the t–s distribution. In this
case, only three bans are chosen at following scales: 2−413;
413−485; 485−512.

According to the sub–band selection by spectral splitting,
both representations of the HRV are decomposed, using
CC. Within this procedure at each time, a triangular re-
sponse filter is applied, extracting 7 stochastic features from
spectrogram (see Fig. 3(a)), while just 3 stochastic features
are obtained from scalogram (see Fig. 3(b)).Validation of
accomplished results is carried out by well–known cross–
validation methodology.

D. Results and Discussion

Tuning of the different stages throughout considered train-
ing methodology (signal decomposition, characterization,
and dimensionality reduction) is carried out by using the
average classification accuracy for the automatic OSA de-
tection. The different approaches are tested and compared,
using k-nn and SVM classifiers, in accordance with above
discussed schemes of feature representation.

Table II summarizes the performed minute–by–minute
classification accuracy for each training strategy. As seen
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Fig. 1. Relevance of the time–frequency plane and frequency axis obtained
and Spectral splitting.
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Fig. 2. Relevance of the time–scale plane and scale axis obtained and
Spectral splitting.

in Fig. 3, the stochastic features dynamic associated to
both decomposition techniques needs a different training
approach. In the case of STFT, the dynamic of the short–
term features remains stronger and the enhancements can not
handling properly its behavior; so, the best classifier accuracy
is obtained with a simple scheme, i.e. a projection into a
single real valued scalar and k–nn as classifier. For CWT, the
short-term features are softer, and the improvements are pro-
portional to the complexity of the proposed scheme. In this
approach, it is clear the contribution of temporal evolution,
due to the fact that the simple projection do not provides
enough information about the studied phenomena. Then,
multivariate projection is added, improving the performance
accuracy for k–nn as for SVM classifiers. Finally, the best
training strategy, is constituted by CWT and its respective
short–time features with multivariate projection, followed
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Fig. 3. Extracted short–time features (short-time ceptral coefficients) from
respective enhanced representation

by a SVM classifier, with an accuracy of 78%, specificity
rounded 72% and sensibility of 75.12%.

IV. CONCLUSIONS AND FUTURE WORK

The training methodology is explored, which is based
short-time features, extracted from HRV signal by using
STFT and CWT decompositions for OSA detection. In
addition, the use of dimensionality reduction is analyzed.
The methodology lies on the hypothesis that using tech-
niques more appropriate for deal with non–stationarity and
mixed dynamics, a better accuracy could be obtained. With
relevance–based splitting scheme over enhanced representa-
tion of HRV signals, a set of dynamic filter–banked features
can be extracted providing an appropriate OSA segment
classification accuracy; nevertheless, the classifier choose has
a significant role in the accuracy. The best performance is
carried out by CWT with PCA and support vector machines
as classifier, followed by the same scheme without PCA as
dimensionality reduction technique. With aim to improve the
segment classification performance, some aspects should be
thoroughly studied. Particularly, it would be of benefit to
explore the needed enhancement by using more elaborated
approaches like Gaussian Mixture Models, Hidden Markov
Models and Gaussian Process, in order to obtain a more
accurate tracking of the strong dynamics on the HRV sig-

TABLE II
CLASSIFICATION ACCURACY

k–nn Accuracy [%]

STFT
Simple projection 75.97
Multivariate projection 73.17
None 74.85

CWT
Simple projection 73.46
Multivariate projection 77.10
None 76.98

SVM Accuracy [%]

STFT
Simple projection 74.65
Multivariate projection 74.95
None 74.47

CWT
Simple projection 77.27
Multivariate projection 78.00
None 77.45

nals. Additionally, the scheme should be proved in another
databases as recommended in [11].
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