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Abstract—Biosignal recordings are widely used in the med-
ical environment to support the evaluation and the diagnosis
of pathologies. Nevertheless, the main difficulty lies in the non-
stationary behavior of the biosignals, difficulting the obtention
of patterns characterizing the changes in physiological or
pathological states. Thus, the obtention of the stationary and
non-stationary components of a biosignal is still an open issue.
This work proposes a methodology to detect time-homogeneities
based on time-frequency analysis with aim to extract the non-
stationary behavior of the biosignal. Results show an increase
in the stationarity and in the distance between classes of the
reconstructions from the enhanced time-frequency representa-
tions. The stationary components extracted with the proposed
approach can be used to solve biosignal classification problems.

Keywords: Time-evolving Latent Variable Decomposition,

Multivariate locally stationary time series.

I. INTRODUCTION

In biosignal applications, it is often of interest to be able

to separate an observed time series into two or more groups

with different stochastic behavior [1]. In particular, there

is a need for distinguishing stationary from non-stationary

components, either because its assumption is a pre-requisite

for applying most of standard algorithms devoted to steady-

state regimes, or because its breakdown conveys specific in-

formation in evolutive contexts, as remarked in [2], [3]. In the

analysis of biomedical data, such as electroencephalography

(EEG) or Heart Rate Variability (HRV), the corresponding

recordings usually appear nonstationary, although there exist

stationary sources, these are not discernible, since superpo-

sitions of stationary and nonstationary components can be

measured.

Several techniques had been proposed for decomposition

into stationary and non-stationary components, among oth-

ers: Smoothing techniques based on ortogonal polynomials,

time-frequency localized linear splines, time frequency rep-

resentations, wavelets, empirical mode decomposition, and

stationary subspace analysis [4]. Generally, extraction of

stationary components from real-valued biosignal can be

provided by using the following two subsequent stages: i) de-

composition of underlying time series, by properly handling

the signal model within a stochastic subspace framework,

and ii) searching of the needed number of components to

match a priori given stationary homogeneity constrains.
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This work is based on evolutionary time-frequency (t-f )
analysis, for which testing of the time-homogeneity con-

straints of the evolutionary spectra is evaluated at different

instants of time by using multivariate time series subspace

representation. In this sense, a new methodology for station-

arity enhancement on biosignals is introduced.

The paper is organized as follows: The section II is dedi-

cated to the description of the methods required to perform

the stationarity enhancement; in section III, the experimental

setup is described and obtained results are presented. Finally,

the results are properly discussed in section IV

II. BACKGROUND

A. Enhanced t-f Representation

The time–frequency representation, planned to determine

the energy distribution along the frequency axis at each

time instant, has been proposed before to investigate the

time–variant properties of the spectral parameters during

either transient physiological or pathological episodes [5].

So, rather than straightforward extraction on raw data, de-

composition into stationary and non-stationary components

is carried out upon enhanced t-f representation of the input

data. In particular, the short time Fourier transform is em-

ployed introducing a time localization concept by means of a

tapering window function of short duration, φ, that is going

along the underlying biosignal, y(t), as follows:

Sy(t, f) =
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with t, τ ∈ T, f ∈ F.
Based on introduced spectrogram of Eq. (1),

the corresponding t–f representation matrix,

Sy ∈ R
T×F , can be described by the row vectors,

Sy = [s1 . . . sf . . . sF ]
⊤, with sf ∈ R

1×T , where vector

sf = [s(f, 1) . . . s(f, t) . . . (f, T )], with s(f, t) ∈ R, is each

one of the time–variant spectral decomposition components

at frequency f, and equally sampled through the time axis.

B. Measure of Stochastic Variability

Several variability analysis techniques suitable for clinical

applications had been proposed, including statistical, geomet-

ric, energetic, informational, and invariant measures [6]. In

this research, the amount of stochastic variability of the spec-

tral component set is computed following the approach given

in [1], that is based on time-variant decomposition estimated

by adapting in time any of commonly used latent variable

techniques, upon which a piecewise stationary restriction is

imposed [5]. So, under the locally stationary assumption,
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consistent estimates of the time-varying spectral density

matrix are obtained and consequently consistent estimates

of the time-varying eigenvalues and eigenvectors may be

accomplished [7]. Namely, the time–evolving principal com-

ponent analysis is extended to the dynamic feature modeling

by stacking the input observation matrix in the following

manner:

Ξy =











s11 s12 · · · s1F
s21 s22 · · · s2F
...

...
...

...

sM1 sM2 · · · sMF











, Ξy ∈ R
M×FT (2)

where vector sif corresponds to f -th short–term spectral

component estimated from the i-th spectrogram matrix Si
y

which is related to the i-th object, with i ∈ M , where M
stands for the total number of observations. Accordingly, the

amount of stochastic variability of the spectral component set

is computed by the singular value decomposition calculation

over observation matrix in Eq. (2). So, the following time–

variant relevance measure is carried out [5]:

g(Ξy ; τ) = [χ(1) · · · χ(τ) · · · χ(FT )]⊤, ∈ R
FT×1 (3)

being χ(τ) = E{|λ2
fvf (τ)| : ∀f ∈ F}, where {λf}

is the relevance eigenvalue set of matrix Ξy, and scalar–

valued vf (τ) is the respective element at τ moment, with

τ = 1, . . . , FT that indexes every one of the relevance values

computed for the whole time–variant data set (notation E{·}
stands for the expectation operator).

To determine distinctly the relevance related to each one of

the time-variant spectral components, measure vector given

in Ec (3) can be arranged into a matrix, termed relevance
matrix, as follows:

ΓΓΓ(Sy) = [g(s1) . . . g(sf ) . . . g(sF )], ∈ R
T×F , (4)

that contains stochastic variability measured for the whole

spectral component set, {sf}. Consequently, the stationarity

and non-stationarity components of a biosignal recording

i ∈ M , can be derived from the amount of variablity of

its spectral components.

a) Matching stochastic homogeneity constrains: For a

given time series, s, regarded as stochastic process, any

randomness structure estimator must remain constant in time.

This work proposes to take the following assumption:

‖E{g(sf); t} −E{g(sf ); t− τ}‖ → 0, ∀t, τ ∈ T (5)

In practice, the extraction of non–stationary components

from a random signal formally can be related as filtration

task, carried out under the following assumptions [4]:

– the observed signals are linear superpositions of station-

ary and non-stationary sources, so, an observable given

time series vector, y, is separated into two unobserv-

able components, i.e., a stationary and non–stationary,

respectively;

y = y∗ + η,

– the non-stationarity component, η, is a second order

measurable stochastic process.

Hence, the level of stochastic homogeneity of the random

variable s∗f is used to extract the stationary and the non-

stationary component of the time series, which are con-

structed from weighted versions of the t-f representation,

i.e. the stationarity components are highlighted and the non-

stationary components are smoothed, and vice-versa.

Finally, the measure of the degree of non-stationarity in

the time series is performed as proposed in [3]. A set of J
stationary surrogate signals {sj : j = 1, . . . , J} is computed

from a given signal. For the test, a contrast measure has to

be defined as:

cn(x) := d(Sy(t, f),E{Sy(t, f) : ∀t ∈ T }) (6)

where d ∈ R
+ is some suitable spectral distance, in this

particular case, the Kullaback–Leibler Distance(KLD). So,

the index of nonstationarity is defined as:

κ =

√

var(cn(y) : ∀t ∈ T )

E{var(cn(sj) : ∀t ∈ T ) : ∀j}
, (7)

III. EXPERIMENTAL SET-UP

A. Database Description

The EEG Database is the PhysioNet available collection

consisting of five subsets (denoted A, B, C, D, and E), each

one composed of 100 single–channel EEG segments of 23.6-

s duration [8]. Sets A and B have been taken from surface

(extracranial) EEG recordings of five healthy volunteers with

eye open and closed, respectively.

A

B

C

D

E

1s

(a) EEG collection

(b) HRV collection

Fig. 1. Examples of considered biomedical recordings

Signals from sets D and C have been measured in seizure–

free intervals from five subjects in the epileptic zone and

from the hippocampal formation of the opposite hemisphere

of the brain. Set E comprises of epileptic signals recorded

during seizure (ictal) from all recording sites. Sets C–E have

been recorded intracranially. All EEG signals were digitized
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at 173.61 Hz with 12 bit resolution. Figure 1(a) shows

exemplary of 1-s segments of each class.

The second database holds a collection of 1-min HRV

segments selected from the HRV-ECG database available on

Physionet. The ECG collection holds 70 electrocardiographic

recordings, each one including a set of reference annotations

added every minute of the recording indicating either the

presence of absence of apnoea during each segment. Finally,

600 HRV segments of 1-minute length (300 apneic and 300
normal labeled) were selected from 25 training recordings to

build the dataset [1]. Figure 1(b) shows 1-min segments for

both normal and apneic recordings.

B. Time-Frequency Representations Enhancement of Esti-
mated Time Series

In this work, based on spectral EEG and HRV signal

properties, the STFT– based quadratic spectrogram is com-

puted by sliding windows for the following set of estimation

parameters:

i). For the EEG signals, a 2.9 s gaussian window and 512
frequency bins within a range of 0 to 83 Hz.

ii). For the HRV recordings, a 32.5 ms hamming window,

50% of overlapping, and 512 frequency bins within a

range of 0 to 1 Hz.

C. Split into stationary and non-stationary subspaces based
on stochastic variability

The main core of this approach is to find the stationary

and non-stationary components of a given signal. For this

aim, a measure of the spectral component smoothness along

the time, can be derived from the relevance map, which can

be used as weighting function of each component, by:

Si
y∗ = WSi

y

T
Si

η = (I −W )Si
y

T
,

where W ∈ R
F×F is a diagonal matrix, where each element

of the diagonal 0 ≤ wff ≤ 1 stands for the amount of

stochastic homogeneity of the random variable sf , derived

from the marginal of Eq (4), I stands for the identity matrix

and {·}T stands for the transpose operator. Thus the weighted

sum of the frequency bands with soft and strong variability

changes can be used to construct the stationary and non-

stationary components of the signal, respectively.

Figure 2 shows an example of the estimated time fre-

quency representations (left), along to the obtained relevance

matrices (middle) and the relevance marginal (right). In

the case of EEG signals (Figure 1(a)), the time-frequency

representations were computed from 0 to 40 Hz while for

the HRV signals (Figure 1(b)) the frequency rank is split

into the two bands of clinical interest, termed Low Frequency

(LF) spectral band (f ∈ [0.04, 0.15] Hz) and High Frequency

(HF) spectral band (f ∈ [0.04, 0.15]Hz). Particulary in

the present study, three different measures were used as

weighting functions: i) the mean along the frequency axis of

the relevance map, ii) the inverse of the standard deviation

along the frequency axis of the relevance matrix (termed std),

and iii) the ratio mean/std. Figure 3 shows the different

weighting functions for both databases.
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Fig. 2. Measured relevance matrixes in terms of stochastic variability.
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Fig. 3. Evaluated marginal weighting functions.

The weighting functions are selected as follows: i) The

mean of the relevance matrix stands for the spectral com-

ponents with more information, because the relevant matrix

can be interpreted as an relevance function. ii) The std stands

for the spectral components with lower variations along the

time (stationarity restriction), and iii) the ration mean/std to

create a function that contains information of the relevance

and the stationarity of each spectral component.

IV. RESULTS AND DISCUSSION

To test the performance of the methodology, the κ index,

which measure the degree of non-stationarity in a signal is

used, for instance the higher the value of κ, the more non-

stationary the signal in hand. Thus, the κ values are computed

for each recording on the datasets and its stationary and

non-stationary reconstructions obtained with the proposed

approach. The results are computed as the mean of the κ
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index.

In general, results on Table I show an increase in the

stationarity of the reconstructions from the enhanced t-f
representation, while the non-stationary residual shows the

largest κ. Nevertheless, it can be noted that best values in

each database are obtained for different weighting functions.

For EEG recordings, as the standard deviation oscillates on

a close interval ( 0.8− 1), most of the information is given

by the mean, obtaining values of κ such that κy∗ < κy < κη.

Weighting Function y y∗ η

EEG
Mean 0.81 0.81 0.85
Std 0.81 0.81 0.80

Ratio 0.81 0.83 0.81

HRV
Mean 0.59 0.54 0.66
Std 0.59 0.53 0.67

Ratio 0.59 0.64 0.56

TABLE I

NORMALIZED κ INDEX FOR THE EEG AND HRV DATABASES.

Unlike the EEG database, the standard deviation for the

HRV recordings behaves as a smooth function restricting, the

level of stationarity of each spectral component, improving

the κ index.

Finally, to evaluate the capability of the proposed approach

in biosignal discrimination, intra and inter class distance

functions are employed to measure quantitatively the influ-

ence of the stationarity and non-stationarity on the groupping

of raw-signals. A Hausdorff distance scheme was employed

as the distance between two sets (classes). Since such scheme

requires the comparison of all possible pairs of time-variant

subjects, the correlation distance is choosen as the pairwise

subject comparison.

For the EEG database, for a three class classification

problem, namely (AB,CD,E), the distance between each pair

of classes tends to take higher values when the stationary

reconstruction is used. Nevertheless, the level of separability

of the (AB) class remains constant.
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Fig. 4. Inter class distance for for EEG recordings

For the HRV database, the behavior of the distance

between classes is improved, i.e. the distance is higher

with the stationary part and lower with the non-stationary

reconstruction, which is the ideal behavior.

V. CONCLUSIONS

A new methodology for stationarity enhancement on

biosignals is presented. The performance is tested on two
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Fig. 5. Inter class distance for HRV recordings

well known databases, which comprise non-stationary be-

haviors, namely, electroencephalography and heart rate vari-

ability recordings. The methodology estimates a spectral

weighting function from a stochastic variability map. Such

function is applied as a filter enhancing the stationary com-

ponents of the signal. As measure of the non-stationarity the

κ, proposed by [3] is used, as well the Hausdorff distance

among classes. Results show an increase in the stationarity

and the distance between classes of the reconstructions from

the enhanced t-f representations. As future work, the use

of several non-stationarity measures is proposed, as well

as the use of the methodology for solving non-stationary

signal discrimination issues by approaches to characterize

the stationary reconstructions of the biosignal recordings.
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