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Abstract— The biological processes are widely studied by genome 
analysis leading to a large number of genes, thus making 
necessary the use of automated evaluation methods. In this study, 
we examine the influence of algorithmic parameters in the 
prediction power of a gene signature and in the selection process 
of the signature itself. We focus on one gene selection approach 
applied on a dataset of the budding yeast Saccharomyces 
cerevisiae, using quite different parameters and evaluate the 
influence on the selected signature. In particular, we adopt a 
recursive feature elimination process where at each step the 
prognostic power of the set of remaining genes is evaluated by 
five different classifiers, as well as by four classifier-fusions 
schemes. More specifically, we consider the logistic-sigmoid, 
kernel nearest centroid, kernel minimum squared error, kernel 
subspace, and support vector machines as classifiers with 
different parameters and/or kernel functions. We also study four 
fusion methods in order to reduce uncertainties related to the 
classifier evaluating the prognostic significance of genes. In all 
cases, the selection process is embedded into a cross validation 
scheme in order to enhance the confidence on the generalization 
of results. We consider the differences of signatures based on 
gene overlap and also the biological annotation of selected genes, 
using the MIPS FunCat architecture. We found out that a robust 
identification of a number of highly differential genes can offer 
“good” predictive power to the models. Furthermore, the 
classification accuracy achieved by mixtures of experts can be 
significantly better than the one of the individual classifiers. We 
also pointed out that different selection schemes result in a 
diverse size of gene signature, with differences in the selected 
genes. Nevertheless, when we annotate the genes of each 
signature we find that the same biological processes are invoked, 
with possibly small differences in the relative frequency of 
participation. 
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I.  INTRODUCTION 
The interest on expression-profile datasets has drastically 

increased with the aim of facilitating diagnosis, prognosis, or 
therapy of diseases. The baker’s yeast Saccharomyces 
cerevisiae, a widely used eukaryotic model organism, has also 
been proved a successful model for studies of human diseases 
and molecular pathways. Yeast studies have pioneered our 
current knowledge about main biological processes (BPs) such 

as cell cycle, regulation of gene expression, and metabolism in 
humans. They have promoted the analysis of disease genes 
and aberrant cellular pathways through molecular, 
biochemical and also bioinformatics techniques [1-2]. It is 
known that almost 50% of genes implicated in human diseases 
have homologs in yeast and vice versa, at least 31% of yeast 
proteins have homologs in humans [3], proving the key role of 
S. cerevisiae in the clarification of human gene function [1].  

One of the main problems in the analysis of gene 
expression is to determine which genes are expressed 
differently in different tissues or in two phenotypically 
different conditions. There are two main approaches in this 
field, one searching for discriminant genes in a certain 
population and the other identifying groups of genes with high 
predictive power for the conditions studied. Finding the genes 
whose expression levels are associated with a particular 
disease is important for selecting the most appropriate therapy 
and for the prediction of its recurrence by scientists. 
Moreover, this would facilitate biologists, allowing the design 
of smaller microarray DNA, adjusted to a specific disease, 
recording the expression levels of only some tens of genes.  

Besides statistical errors in the measurements of different 
datasets due to platform or procedural inconsistencies, 
different algorithms operating on the same dataset may deduce 
different signatures with minimal (or even no) overlap. Not 
surprisingly, even different parameters of the same algorithm 
may influence the results of marker evaluation. One of the 
issues with unstable performance of prediction algorithms is 
the “curse-of-dimensionality”, which appears in genomic 
datasets where the number of genes is extremely larger than of 
available samples. Nevertheless, recent studies advocate 
properties to such datasets, which can be directly exploited to 
relieve uncertainties. Furthermore, from a different point of 
view, the enrichment of statistical techniques with relevant 
biological knowledge can shed light to the biological 
relationship of genes that otherwise appear different from their 
statistical evaluation. In addition, several meta-analysis studies 
reveal that two signatures that may show minimal overlap may 
still share significant biological overlap in the associated 
annotations, pathways or biological processes [4].  

This paper proceeds with the algorithmic issues of the 
proposed methodology in Section II. It presents statistical 
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results and analyzes the biological consequences on a database 
of budding yeast in Section III. Finally, the paper concludes in 
Section IV.  

II. METHODOLOGY 
We propose a new methodology for feature selection in 

order to derive the most important or predictive genes. At the 
base of this methodology, the recursive feature elimination 
algorithm based on linear neuron weights is firstly placed, in 
order to achieve recursive elimination of features. This block 
is succeeded by the estimation of the predictive power of 
“remaining genes” by means of different classifiers, as well as 
by mixtures of them. Multiple repetitions of this process 
provide an assignment of statistical significance to genes, 
based on their relative frequencies. The process of gene 
selection is embedded in a five-fold cross-validation scheme, 
in order to strengthen confidence in the results. 

A. Recursive Feature Elimination Algorithm 
The recursive feature elimination based on linear neuron 

weights method (RFE-LNW) [5] is used to evaluate genes via 
their recursive elimination. In order to select the most 
differentially-expressed genes, this algorithm uses a variation 
of Fisher’s coefficient and assigns higher weights to genes 
which differentiate more their expression in the two classes of 
interest and smaller or even zero weights to genes which are 
expressed in similar or the same way.  

Particularly, weights are initially assigned to all genes 
randomly and are re-evaluated and potentially adapted from 
iteration to iteration, as in   

2i i i iw (t + 1) = w (t) + sign(e f (u)) sign(g ) f (g )      (1)μ ⋅ ⋅ ′ ⋅ ⋅   

where μ  is the learning rate, e  is the error function, f (u)′  is 

the derivative of a logistic-sigmoid function and 2 if (g )  

denotes the Fisher’s coefficient for the ig  gene. The genes are 
ranked according to the absolute values of weights and the 
genes with the smallest weight in absolute value are 
eliminated, considered as the less important. The classification 
accuracy of the surviving genes at each iteration is estimated 
by different learning and predictive models. The algorithm 
terminates when all genes have gradually been eliminated and 
then we can find out the smallest subset of genes with the 
highest classification accuracy for each model. 

B. Classification Models 
The support vector machines [5, 6], as a state-of-art 

classification method, as well as other kernel-based classifiers 
[7], are used as learning and prediction models.  

A support vector machine attempts to find the best 
separating hyperplane to distinguish between the two classes 
of interest, positive (+1) and negative (-1). The discrimination 
(decision) function is determined by the hyperplane that 
optimally separates the two classes, which is found when the 
boundaries of the two classes are as far as possible (maximal 

margin) from each other, and is placed in the middle of these 
boundaries. This hyperplane is defined in equation “(2)” only 
by instances (Support Vectors-SV) and not the whole data. 
Thus, 

m
sv

i i i
i=1

 f(x) = sgn(( y k(x , x)) b)              (2)                  λ +∑  

where m is the number of the training samples, λ  represents 
the vector of Lagrange multipliers, y is the label (either +1 or -
1), k is a kernel function [5]. These instances or SVs are 
placed on the boundaries of the two classes and therefore 
define the boundaries (margins) of separation. 

The kernel nearest centroid method uses training data to 
calculate the mass centers of the two classes, i.e. of the 
samples belonging to the positive and to the negative class and 
assigns the new test sample to the class whose centroid is 
closest (smallest quadratic distance) to the sample [7]. The 
kernel minimum squared error machine compares the kernel 
matrix between the new test sample and all the training 
samples, with the target vector of all training samples and 
assigns the new sample to either the positive or the negative 
class, according to the sign of this comparison [7]. The kernel 
subspace method computes the eigenvalues and the 
eigenvectors of the kernel matrices for the positive and the 
negative training samples. After that, it generates two 
discriminant functions by multiplying the largest eigenvalues 
and eigenvectors with the kernel matrix between the new test 
sample and all the training samples for each of the two classes 
separately. The new test sample is assigned to the class which 
is represented by the discriminant function with the largest 
value [7].  

In order to select the most appropriate kernel for each 
classifier we apply several kernels and compute the kernel-
target alignment [8] measure for all the pairs of kernel-
classifier. According to this measure, we finally propose the 
use of the following schemes: support vector machines with 
linear and quadratic kernel, kernel nearest centroid classifier 
with second degree polynomial kernel, kernel minimum 
squared error machine with Gaussian kernel and kernel 
subspace method with third degree polynomial kernel. 

Furthermore, we present four methods of combining 
classifiers. The first mixture-of-experts approach implements a 
fusion of the above five individual classifiers in a fuzzy weight 
combination [9]. The five experts are trained over the training 
set and after that, they perform classification of the test 
samples. Then we implement five gate functions taking into 
consideration the average values and the variances of these 
individual decisions. Finally, the weighted distance from class 
mean gate functions and the decisions are combined into a 
weighted averaged form as in “(3)”, where

i x  is the i-th test 
sample, k kg ( ) a n d f ( ) are the gate and decision functions 

 
                               

K

i k i k i
k = 1

           f (x ) = g (x ) · f (x ) (3 )∑
for the k-th classifier and f(.) is the decision function of the 
fusion scheme. 
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The second method [10] is a fusion of two logistic-sigmoid 
classifiers trained on the basis of gradient descent learning. 
More specifically, the two experts along with two softmax 
activation gate functions [11] assign different weights to the 
genes of the training samples. After the generation of the 
mixture’s decision for each sample, the weights are updated 
based on the error of the mixture’s decision, following a 
gradient descent learning algorithm. The training process is 
repeated until the weights converge. During the testing 
process, the two experts and the two softmax activation gate 
functions use their fixed trained weights to produce the 
mixture’s decision, in the form of “(3)”.

                         

 

The third mixture of experts is a special blend of the two 
schemes above. It trains the two logistic-sigmoid experts 
similar the second mixture, with the difference that the 
weights are updated on the basis of their own classification 
error rather than the mixture’s error.  

Finally, the fourth method [10] uses a different form of 
expert mixture, as it implements classifier selection rather than 
classifier fusion. The training set is divided into two clusters 
with the Self-Organizing Map (SOM) algorithm. Then, two 
local experts are trained, each one on the basis of one cluster, 
and perform classification of the test samples based on the 
logic of the nearest neighbor distances. For each test sample 
we implement two weighted distance from class samples gate 
functions reflecting its distance from the training samples of 
the each cluster. The mixture’s decision is a linear 
combination of the experts’ decisions and the gate functions, 
similar to “(3)”.  

C. Gene Selection Strategy 
The proposed strategy for feature selection aims at 

selecting the most significant genes and consists of three 
levels. The first level addresses the full dataset and aims at 
deriving and initial set of many characteristic genes. The 
second level performs a more detailed selection of genes 
starting from the subset of genes obtained from the first level. 
Each of the previous level evaluates the appropriate number of 
genes to be selected in a fivefold cross validation circle, and 
then proceeds with the actual selection of specific genes by 
implementing twenty cycles of fivefold cross validation. The 
third level evaluates the predictive power of the significant 
genes selected from the second level, through ten cycles of 
fivefold cross validation. These steps are briefly discussed in 
the following. 

First level of gene selection strategy: This level consists of 
two steps, a data evaluation and a gene selection one. At the 
first step of whole-data evaluation (1st sublevel), an 
assessment of the classification performance of the genes of 
the entire dataset is performed. Firstly, within a fivefold cross 
validation scheme, we apply the RFE-LNW algorithm for the 
recursive elimination of all genes. In each repetition of this 
algorithm, the less significant genes are removed from both 
the training and the test dataset and the predictive power of the 
surviving genes is assessed by the individual classifiers and 
mixtures of experts. When all genes have been gradually 
eliminated for all five iterations, our models have been trained 
on several possible training sets and have been tested for their 

classification accuracy. We are now able to compute for each 
model the average performance achieved for all stages of 
elimination and identify the smallest number of genes for 
which the model achieves the highest average accuracy.  

Thus, the first step of data evaluation derives an initial 
estimate of the minimum number of genes (say A) for each 
model, achieving the highest average classification 
performance. This number of A genes is used as a stopping 
criterion of the RFE-LNW algorithm for each iterative cycle 
(fold) in the next step of gene selection, which attempts an 
initial selection of predictive genes from the whole set of 
genes. We perform several runs of the feature selection 
algorithm, each stopping at A genes, and record these specific 
genes. After the implementation of twenty cycles of fivefold 
cross validation, we gather all recorded genes and compute 
their frequencies of occurrence. The genes with highest 
frequencies according to a threshold (knee of the graph) are 
selected. Thus, at the end of 100 CV repetitions, we plot the 
genes from the recorded list with their corresponding 
frequencies and we only keep the genes with the highest 
frequencies (say C) according to the graph’s knee.  

At the end of the first level of gene selection, we have a 
first selection of C most significant genes, which are retained 
from the dataset. These C specific genes are evaluated for their 
classification performance in the second level of data 
evaluation.  

Second level of gene selection strategy: This level also 
consists of two steps, a data evaluation and a gene selection 
one, which are implemented starting from a number of C 
genes for all data samples. At the step of data evaluation, an 
overall assessment of the classification performance of the C 
genes is performed in the same manner as in the first level of 
data evaluation. At the end of this step we derive the minimum 
number of genes (say D) for each model, achieving the highest 
average classification performance. Then, the second step of 
gene selection performs a reduction of genes from C to D most 
significant genes with the RFE-LNW algorithm being applied 
multiple times.  

The selection process is exactly the same as in the first 
level of gene selection, with the only difference being that the 
stopping criterion of the RFE-LNW algorithm is the number 
of D genes. We perform twenty cycles of fivefold cross 
validation and for each iteration we record the final D genes. 
At the end of 100 CV repetitions, we perform the selection of 
the most significant genes (say F) based on their relative 
frequencies of occurrence. These genes, which compose the 
“gene signature”, are evaluated for their classification 
performance in the final level of signature evaluation.  

Third level of gene selection strategy: This final level 
performs an assessment and evaluation of the classification 
performance of the F selected genes from the second level of 
gene selection. The dataset is reduced again in order to include 
only these F genes. Then we apply 10 cycles of fivefold cross 
validation, so that the classification models are trained and 
tested for their generalization ability for all the F specific 
genes. In this final level, the RFE-LNW algorithm is not used 
since there is no need for feature elimination.  
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Our gene selection strategy do not perform evaluation of 
individual genes for their discrimination ability between the 
two classes (as in filter methods), but evaluation of groups of 
genes for their predictive power (in accordance to wrapper 
methods). In this scheme the evaluation of genes changes at 
each iteration step and for every data fold selected. The 
proposed use of a two-level gene selection scheme aims to 
restrain such variations in the ranking of genes.  The first level 
derives a large number of potentially useful markers from the 
initial list of genes. Alternatively, the second level attempts a 
refinement of these markers by repeating the selection process 
on a more constrained basis, starting from a smaller list of 
genes. 

III. RESULTS 
We test our method on the microarray dataset of Eisen et 

al. (1998) [12], which contains 2467 yeast (Saccharomyces 
cerevisae) genes. We used data from time series during the 
following processes: 1) the cell division cycle after 
synchronization by the centrifugal elutriation (positive class) 
and 2) environmental conditions such as temperature and 
reducing shocks (negative class) (14 time series, respectively). 

The goal of gene selection is to extract a small set of 
informative genes that are expressed differently in the two 
above processes which constitute the two classes of interest in 
our work [13]. Informative genes are those useful to train a 
model which can generalize, i.e. correctly predict the class of 
new samples. Generally, in this work we used statistical tools 
in recursive feature elimination, in order to produce a sorted list 
of genes that contain in decreasing order the most frequent 
genes from the set of most differentially expressed genes. 
Successive groups of genes from the different selection levels 
are used for training and testing the models using the samples 
of the two classes of interest.  

Initially, the classification accuracy of the models for the 
entire set of 2467 genes is used as reference of the predictive 
value of genes and gene selection. Starting from this initial 
number of genes, we proceed with recursive feature elimination 
up to a level that achieves high classification accuracy with 
only a few genes. Thus, we use the predictive accuracy as a 
measure of relevance of each group of genes. In the process of 
gene elimination, however, the relevance of a gene is 
determined by the degree of differential expression in the 
classes of interest and by the relative frequency of appearance 
of this gene. In essence, our gene selection scheme is based on 
the hypothesis that, if a number of highly differential genes can 
be robustly identified, then with large possibility this set of 
genes will express “good” predictive power [14]. In essence, 
the proposed gene selection scheme exploits and combines the 
discriminative power as well as the predictive power of the 
genes in the selected signature. Then, the proposed 
methodology provides a reliable method to assign statistical 
significance to genes and highlights only those that are the 
most relevant from the initial set of genes.  

 By applying this proposed methodology for nine different 
predictive schemes (individual classifiers and mixtures), we 
generate nine gene signatures at the end of the second level of 
gene selection, one for each tested model. These signatures are 

compared in terms of their accuracies and their differences/ 
similarities based on their potential overlap are discussed. We 
also compare the improvement in classification accuracy of 
each model from the initial set of 2467 genes to the selected 
group of genes in the corresponding gene signature. Finally, the 
signatures are compared in terms of the biological description 
and the biological significance of the selected genes.  

A. Statistical Results 
Figure 1 presents the mean classification accuracy of all 

models for the dataset involving the initial 2467 genes and the 
final F selected genes. The numbers of the F selected genes are 
44, 13, 13, 13, 11, for the kernel nearest centroid classifier 
with 2nd degree polynomial kernel, kernel minimum squared 
error  machine with Gaussian kernel, kernel subspace method 
with 3rd degree polynomial kernel, SVM quadratic, Svm 
linear, and 9, 13, 13, 13 for the first, second, third and fourth 
mixture-of-experts, respectively. From these results, we 
conclude the following points:  

• Each model results in a different number of selected 
genes, but not in completely different gene signatures; 
apart from the differences in the selected genes, there 
are some genes in common.  

• The classification accuracy achieved by the models 
through the genes that constitute the signatures, is 
significantly better than that achieved through the 
initial set of genes with 2467 genes, as shown from 
figure 1. The only exception is the kernel nearest 
centroid classifier that seems to reduce its accuracy for 
a small number of genes.  

• The mixture of experts approach can achieve higher 
accuracy, especially if the combination type is classifier 
selection, such as the fourth mixture. This mixture 
forms its decision based on the complementarity of the 
individual decisions, which have been obtained from 
the expert’s training on different subsets of the feature 
space, separated by SOM. 

• Last but not least, we observe that the performance of a 
single classifier depends not only on the form of its 
decision function but also on its kernel, since its 
performance varies using different kernels. Adapting a 
kernel [8] suitable to improve alignment with the 
labeled training samples, greatly enhances the 
alignment with the test samples, resulting in improved 
classification accuracy. Thus, the choice of kernel is a 
crucial issue for each classifier as it influences its 
classification accuracy. 

In addition to these results, we computed the similarity 
percentage between the gene signatures of the models in pairs, 
with reference to the smaller set. With this test we attempt to 
clarify if comparing two sets of different size, all elements of 
the smaller set are included in the larger set; in this case the 
similarity percentage reaches 100%.  

We found that the rates of gene similarity are high in many 
cases, as shown in tables I and II. However, there are also 
combinations of large disimilarities. The signatures of the 
individual classifiers have fairly common genes among 
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Figure 1.  The average accuracy of the individual classifiers and the mixtures of experts, for the initial 2467 genes and the F selected genes. 

themselves, as well as with their mixture. The classifier with 
the larger variation  is the kernel nearest centroid with 2nd 
degree polynomial kernel, which is reasonable considering 
that its gene signature consists of many more genes than the 
other models. Finally, the similarity percentages of the 
signatures from different mixtures are high, indicating good 
stability of the mixure approach in the gene selection process. 

B. Biological Results 
Genes that may look different from their statistical 

evaluation may have strong biological relationship. Thus, two 
or more gene signatures with small overlap between them, it is 
possible to share significant biological overlap in relevant 
descriptions or in related biological processes [13].  

Towards this direction, we use the FunCat classification 
scheme [15], which is a hierarchically structured, organism 
independent, flexible and extendable system that allows the 
functional description of proteins from each organism, such as 
prokaryotic genomes, eukaryotic monocytes genomes, plants 
and animals. Taking into consideration the extremely broad  

TABLE I.  THE SIMILARITY PERCENTAGES AMONG THE 5 INDIVIDUAL 
CLASSIFIERS AND THEIR MIXTURE’S 

and diverse spectrum of known protein functions, FunCat 
consists of 28 main functional categories that cover general 
fields like transcription and metabolism. It presents a 
hierarchical structure that resembles a tree, using up to six 
levels of increasing specialization; the second version used in 
this work includes 1307 functional categories of eukaryotic 
genomes of Saccharomyces cerevisiae. The FunCat 
descriptions were used to scan the significantly enriched 
categories in all different expressed genes. Considering each 
gene signature with this system, we determined a number of 
interesting biological processes involving the signature genes.  

These processes are shown in figures 2 and 3. We observe 
that the 11, 13, 13, 13, 44 and 9 genes of the five individual 
classifiers and their mixtures, respectively, may not be the 
same but they all participate in the same 12 BPs of the same 
level (out of 28 main branches of FunCat), as illustrated in 
figure 2. The same happens with the gene signatures of the 
four mixtures, the genes of which share 10 BPs of the same 
level (out of 28 main branches of FunCat), as shown in fig. 3.  

Importanly, the observed BPs shown in figures 2 and 3 
reflect the expected cellular processes according to the 
examined data. For example, the overrepresented process in 
MIPS FunCat “cell cycle and DNA processing” refer to the 
events during the cell-division cycle, while “transcription” 
supports previous experimental findings about the high  

TABLE II.  THE SIMILARITY PERCENTAGES AMONG THE 4          
MIXTURES  OF EXPERTS 
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Figure 2.   Comparative results of 12 main BPs for the 5 individual classifiers 
and the fuzzy mixture of them. 

periodical transcriptional activity during the S. cerevisae cell 
cycle that can function as a cell cycle oscillator independently 
or in collaboration with the CDK oscillator [16].  

These results confirm the need for exploration of biological 
effects related to the genotype and the biological support of 
similarity measures and/or distance functions used in statistical 
approaches, as to reduce uncertainty in decision making that 
include genomic data. 

IV. CONCLUSION 
The selection of a subset of important genes significantly 

increases the accuracy of the classification models by reducing 
the uncertainty introduced by their parameters. Different 
algorithms that operate on the same dataset can lead to 
different signatures with little or no overlap, but also the 
different parameters of the algorithm itself can affect the 
results of marker evaluation. This study attempts to reveal and 
emphasize aspects of such parameter influence in the quality 
of the signature. We followed a fixed approach for the 
enhancement of genes that are expressed differently in two 
classes of interest. Thus, we tested the same way that weights 
are assigned to genes and the same criterion for gene selection 
for recursive elimination by the RFE-LNW algorithm. The 
factors that differentiate our study in the selection of most 
significant genes and leads to the formation of 9 different gene 
signatures are: 1) the different algorithmic parameters 
(different classification models) introduced for evaluation of 
subsets of genes and 2) the way in which we choose the final 
number of genes (different accuracy thresholds used at the 
first level of evaluation for each model). As a result, we 
derived certain differences in the selected gene signatures. 
Nevertheless, by considering the biological significance of 
these signatures, we conclude that there is significantly 
increased overlap in terms of biological processes, which 
necessitates the exploration of biological effects.  

Concluding, we emphasize the need for further testing of 
our findings, towards identifying and validating such 
implications of gene selection and classification in different 
organisms, including human.   

 

Figure 3.   Comparative results of 10 main BPs for the 4 mixtures of experts.  
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