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Abstract — Computer-aided drug discovery techniques have 
been widely used in recent years to support the development of 
new pharmaceuticals. Virtual screening, the computational 
counterpart of experimental screening, attempts to replicate the 
results from in vitro and in vivo methods through the use of in 
silico models and tools. This paper presents the LISIs platform; a 
web based scientific workflow system for virtual screening that 
has been implemented primarily for the discovery of 
chemoprevention agents. We describe the overall design of the 
system as well as the implementation of its various components. 
Indicative results from early applications of the system are also 
presented to illustrate its potential uses and functionalities.  

Keywords-virtual screening; scientific workflow; predictive 
models; chemoinformatics; chemoprevention; drug discovery 

I. INTRODUCTION 
Chemoprevention research is the process of finding drugs 

and natural substances to prevent the occurrence of a particular 
disease (e.g. cancer) and determining their mechanism of 
action [1], [2]. This field of biology has only recently begun to 
attract interest from the life sciences informatics research 
community. Due to the substantial similarity between 
chemoprevention and the typical drug discovery process 
(DDP), applications in the chemoprevention field heavily 
borrow from applications in DDP. However, some differences 
do exist, the most important being that chemopreventive 
compounds must have no toxic effects since they are 
administered to healthy humans. In contrast, in the case of 
drugs, some toxic effects may be acceptable based on the 
severity of the disease they are targeting. In this paper we 
propose a virtual screening cancer chemoprevention platform 
based on scientific workflow modelling.  

Virtual Screening (VS) is the computational counterpart of 
biological screening performed in laboratories. Its goal is to 
decrease the number of compounds physically screened by 
identifying small subsets of large molecular databases that have 
an increased probability to be active against a specific 
biological target. In this respect the method is related to 
machine learning techniques, such as classification and 
regression, which prepare predictive models to estimate the 
behaviour of unknown records based on a set of records with 
known properties. Typically, VS processes involve substantial 
numbers of molecules and combine a variety of computational 
techniques. 

Scientific Workflow Management Systems (SWMSs) are 
powerful tools with enormous possibilities to facilitate the 
design and execution process of computational 
experiments.  SWMSs enable scientists to plug together 
problem solving computational components [3] and implement 
complex in silico experiments, such as the analysis of large 
datasets that arise from sensors or computer simulations and 
the design and execution of complicated algorithms requiring 
multiple computationally intensive steps. 

Since chemoprevention research and DDP are highly 
similar, the tools (including software applications) used for 
drug discovery can also be used for chemoprevention research. 
These tools can provide to chemoprevention researchers in 
silico models for problems that are common in the two research 
fields. Moreover, appropriate computational techniques can be 
used to create specific models for the needs of 
chemoprevention. Among them, are SWMSs used for VS in 
DDP, such as Taverna [4], KNIME [5], PipelinePilot [6] and 
InforSence Suite [7], which can also be used in 
chemoprevention research. 

To this date, few chemoinformatics applications and 
computational chemistry tools have been reportedly used in 
the chemoprevention field. Apparently, it is required that 
cancer chemoprevention researchers have access to a 
customized, and easy to use, suite of in silico tools for 
handling and analysing relevant data. To fulfil this need we 
develop the LIfe Science InformaticS (LISIs) system, a 
SWMS that enables the creation of virtual screening 
workflows using general tools and methods borrowed from 
chemoinformatics, as well as components custom designed for 
cancer chemoprevention research. The LISIs platform is part 
of GRANATUM, an EU-FP7 project. The aim of this project 
is to bridge the gap between biomedical researchers ensuring 
that the biomedical community has access to the globally 
available information needed to perform complex cancer 
chemoprevention experiments and to conduct studies on large 
scale datasets.   

The structure of the paper is as follows. In section II 
background and methodology are given covering the virtual 
screening process and scientific workflow systems. In section 
III the modules of the LISIs platform are presented, followed 
by section IV that describes a showcase and early results. 
Finally section V gives concluding remarks. 

This work is done within the GRANATUM project, which is partially
funded by the European Commission under the Seventh Framework
Programme in the area of Virtual Physiological Human (ICT-2009.5.3). 
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II. BACKGROUND METHODOLOGY 

A. Virtual Screening Process 
Virtual Screening can be performed on libraries of real or 

virtual compounds and requires either measured activities for 
some known compounds or a known structure of the 
biomolecular target [8]. When only measured activities of 
compounds are known, virtual screening may employ analog-
based library design, classification/regression models or any 
combination of the above. Each of the methods offers some 
advantages while it suffers from several shortcomings and so 
researchers typically design a VS experiment taking into 
account the specific requirements of each case. If high quality 
activity measurements about the ligands are available 
regression methods (in the form of e.g. Quantitative Structure 
Activity Relationship - QSAR models) can be used to extract 
rules capturing the essence of ligand similarity, and hopefully 
binding action, with high confidence. These rules can easily be 
used to filter untested compounds swiftly. Classification 
methods have fewer requirements than QSAR but also produce 
cruder results. Some methods rely on predefined sets of 
molecular descriptors and this makes them appropriate as 
general tools. However, such over-dependence on the 
descriptor set chosen restricts their potential pool of models 
and general findings. Reports in the literature [9], [10] describe 
the usage of descriptor sets in the 100’s of thousands, a clear 
attempt to ensure that no significant ligand feature will be 
missed. Similar issues trouble the usage of 2D analog-based 
library design methods based on similarity searches.  

When the structure of the target receptor is known the VS 
methods of choice typically rely heavily on docking and small 
molecule modelling. Initially, they take advantage of the 
knowledge about the receptor site to model it and then perform 
docking of molecules from a database in a systematic manner. 
A number of conformations are usually sampled for each 
molecule [11] and a score for every possible docking attempt is 
kept [12], [13]. Due to the costly nature of numerous steps of 
the process computer clusters are widely employed by the 
pharmaceutical industry [11], [14]. Additionally, databases of 
multiple conformers of compounds are prepared to avoid their 
reproduction for every virtual screening run [15]. As a result, 
currently, databases with millions of compounds can be 
screened within a few hours [14]. 

The key success measurement of VS is the achievement of 
high enrichment, i.e. getting an experimental hit rate for the 
subset of compounds it recommends that is considerably 
increased over that of a random compound set [14]. A 
successful process with high enrichment results in considerable 
savings in resources and time, since fewer compounds need to 
be physically screened while most hits present in the original 
large database are retrieved. Often, to improve the results of 
VS, several methods are used and their results are combined to 
produce a concise, high quality virtual hit list [11], [12]. 
Furthermore, it is common to perform a pre-processing step 
where databases of molecules are cleaned by filtering out 
compounds with undesired properties, such as large size, high 
flexibility and non-compliance to Lipinski’s rule of 5 [16]. 
During this step compounds containing known unwanted 
substructures, e.g. known toxicophores, may also be eliminated 

[14]. However, and despite drastic improvements of various 
algorithms and steps involved in the process, VS accuracy still 
varies depending on the pharmaceutical target, the virtual 
library and the docking and scoring methods used. Thus, a 
necessary last step to the process is evaluation of the VS 
experiment results typically via visual inspection by a human 
expert [17]. A typical set up for a VS experiment is illustrated 
in Fig. 1. 

B.  Scientific Workflow Systems 
SWMSs accelerate scientific discovery by incorporating 

data management, analysis, simulation, and visualization tools 
into a common platform. They provide an interactive visual 
interface that facilitates the design and execution of 
workflows. More over SWMS enable remote access as well as 
data and services sharing, making possible collaborations 
among geographically distributed researchers. In the next 
paragraphs a brief overview of the field is given. A more 
detailed review on SWMS can be found in [18]. 

 

 
Figure 1.  A typical set-up for a virtual screening experiment 

Essentially, scientific workflows (SW) technology 
provides tools that automate the execution of a class of in 
silico experiments, offering multiple benefits for all the phases 
of an experiment’s lifecycle. During the design and 
implementation phase, a repository of tried and tested 
workflows can be available to the scientists to choose from. 
During the execution phase, as experimenting is by definition 
a repeatable process, workflows can relieve the scientists of 
repetitive tasks, while at the same time enable keeping track of 
all the intermediary steps and data (provenance). These traces 

440



can be used at a later stage to enable the reproducibility of the 
experiment. Provenance information [19] is also useful during 
the analysis phase to see the evolution of the research, trace 
the origin of an error or go back on a previous stage and 
change the direction of the research. Visualization tools are 
provided for this phase as well for assisting in the evaluation 
of the results. 

The recent popularity of SWMS is partially owed to the 
emergence of the computational science paradigm, which 
promotes collaboration between scientists both within and 
across disciplines. Through the use of SWs, interdisciplinary 
teams can collaborate closely, share workflows and 
computational components and jointly undertake research 
initiatives requiring end-to-end scientific data management 
and computational analysis. Advances in grid technologies 
allow workflows to exploit parallel executions enabling large-
scale data processing. In this case, workflows are used as a 
parallel programming model for data-parallel applications. 
Web services allow ease of access to local and distributed data 
sources as well as data aggregation from highly heterogeneous 
environments. 

III. GRANATUM LISIS PLATFORM 
LISIs aims to provide a set of tools to create, update, store 

and share Scientific Workflows for the discovery of new 
chemopreventive agents to chemoprevention experts. The 
system is available via a web interface through a password 
protected, tiered login process. Specifically, the login process 
provides different level access to platform functionalities 
based on the user profile. The user is able to assemble SWs 
utilizing available in silico models and tools loaded into the 
platform. Depending on the user profile and associated 
permissions, users may also construct new models and tools 
through the development of custom workflows made available 
by the system for this purpose. Workflows execute on the 
system server. The execution results are stored on the user’s 
GRANATUM workspace, where the user is able to access, 
manipulate or share them with other users. 

In general, the GRANATUM platform provides access to 
(i) Registered Users, which are Team Members (Senior 
Researcher, Junior Researcher) and Collaborators, (ii) Public 
Users and (iii) Administrators. LISIs platform is accessible 
only to registered users of the GRANATUM platform.  

The LISIs platform is comprised of five (5) major 
modules, i.e. input, pre-processing, processing, post-
processing and results/outputs as illustrated in Fig. 2. Each 
module hosts a collection of component categories essentially 
implementing a variety of functionalities. A component 
category may implement different variations of the same 
functionality. 

A. Input Module 
The input module consists of two categories of 

components: (i) Data File Input, which provides components 
for loading information from chemical and biological data 
files, and (ii) Linked Biomedical Space Input, which provides 

components for retrieving information via other functionalities 
of the GRANATUM platform [20]. 

1) Data File Input 

A set of components which support parsing different 
chemical and biological data files. File formats currently 
supported include: (i) .sdf (Structure Data File), .smi (SMILES 
- Simplified Molecular Input Line Entry Specification), .pdb 
(Protein Data Bank) for chemical data files and (ii) .csv 
(Comma Separated Values) for biological data files. 

2) Linked Biomedical Space Input 

A set of components which support requesting and parsing 
data provided/retrieved from the GRANATUM Linked 
Biomedical Data Space. 

B. Pre-Processing Module 
The pre-processing module has four component categories: 

(i) Standardization/Normalization, (ii) Format Transformation, 
(iii) Chemical Descriptor Calculation and (iv) Compound 
Fragmentation. 

1) Standardization/Normalization 

This component category provides tools for standardizing 
and normalizing features of input data. 

2) Format Transformation 

This component category provides tools for converting 
specific file formats to others accepted and processed by the 
LISIs platform. 

3) Chemical Descriptor Calculation 

This component category provides tools for the calculation 
of various chemical descriptors of chemical compounds. Such 
descriptors include: molecular weight, hydrogen bond 
donors/acceptors and various 2D fingerprint representations 
(e.g. Morgan and MACCS fingerprints). 

4) Compound Fragmentation 

This component category provides tools to identify 
chemical substructures present in compounds through the in 
silico fragmentation of chemical compound structure. The use 
of various chemical compound fragmentation methods is 
available, such as Retrosynthetic Combinatorial Analysis 
Procedure  (RECAP) [21], [22], Ring System Decomposition 
(RSD) and Molecular Frameworks [22], [23]. 

C. Processing Module 
The processing module consists of five component 

categories: (i) Attribute Filtering, (ii) Compound Similarity, 
(iii) Substructure Matching, (iv) Docking Experiments and (v) 
Predictive Models. 

1) Attribute Filtering 

This component category provides tools for implementing 
filters for selecting compounds based on their chemical and 
biological attributes. Specifically, these components allow 
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users to enter ranges of acceptable values on available 
compound properties (including properties calculated by the 
Chemical Descriptors component and properties provided 
externally via the Data Input Module). 

2) Compound Similarity 

This component category provides tools for implementing 
filters for selecting compounds based on chemical structure 
similarity to other compounds indicated by the user.  

3) Substructure Matching 

This component category provides tools for implementing 
filters for selecting compounds based on whether they contain 
(or not) the chemical substructure(s) indicated by the user.  

4) Docking Experiments 

This component category provides tools for implementing 
filters for selecting compounds based on predicted binding 
affinity of a compound to a target protein using in silico 
docking experiments. Our platform currently uses two popular 
docking applications, which are free for use to the academic 
research community, namely Chil2 GlamDock [24] and 
AutoDock Vina [25]. 

AutoDock Vina attempts to find the best protein-ligand 
docking pose by employing a scoring function that takes into 
consideration both intramolecular and intermolecular 
contributions, as well as an optimization algorithm [26]. 
GlamDock employs a simple Monte Carlo (MC) and a 
gradient-based minimization procedure, in order to refine the 
initial MC placement [27]. 

5) Predictive Models 

The Predictive Models component enables the usage of 
data-driven models designed to predict biochemical properties 
of interest to the user for the selection of compounds with 
acceptable predicted properties. The primary aim of this 
component is to: (i) provide the user with the tools to construct 
predictive models based on available information on a set of 
compounds, and (ii) use existing models to predict the 
attributes of new compounds to select those with an acceptable 
profile. The constructed models fall into the category of 
Quantitative Structure - Activity Relationship (QSAR) and 
Quantitative Structure - Property Relationship (QSPR) models 
used by the drug discovery community to predict relevant 
properties of molecules [28–31]. 

In order to drive the model-building process, a “Hierarchy 
of Cancer Chemoprevention Properties/Activities” is 
developed within the GRANATUM consortium. In brief, this 
light ontology-like effort aims to make available to modelling 
experts possible (independent) ways by which a substance 
may act as a cancer chemopreventive agent. The main idea is 
that this hierarchical structure will facilitate the development 
of predictive models aiming at different levels of granularity. 
Those more detailed models give more information than the 
generic model (Activity + Mechanism of Activity); however, 
they are more difficult to be constructed, since more data for 

each specific class should be available. Importantly, these 
hierarchies are dynamic in nature, i.e. more subclasses may be 
added at later stages in the light of new data. 

During the model construction phase, the input to this 
component consists of a list of training set compounds with 
their respective property values and the settings for the 
predictive modelling application to prepare. The output of the 
component includes the predictive model and a log file 
containing measures of the quality of the model estimated by 
cross-validation and other appropriate techniques.  

During the model usage phase the input to this component 
consists of a list of new, test compounds and the specific 
predictive model to use. The output of the component is a list 
of compounds with the predictions of the model for each 
compound and a log file documenting the results. 

The component currently makes use of four popular 
predictive modelling algorithms widely used by the 
chemoinformatics community, namely Decision Trees (DT) 
[32], Random Forests (RF) [33], Support Vector Machines 
(SVM) [34] and k-Nearest Neighbours (k-NN) [35]. The 
modular architecture of the system will also enable future 
extensions, with the possibility of adding other appropriate 
predictive modelling algorithms. 

D. Post-Pprocessing Module 
The Post-Processing module contains the 

Cleaning/Formatting component. The main functionality of 
this component is the manipulation of the results taken from 
components described above, for the final reporting and 
visualization steps. 

E. Output Module 
The Output module contains components for: (i) 

Reporting, (ii) Visualization and (iii) Storage. 

1) Reporting 

This component provides tools for the formatting of the 
processing results from one or more in silico experiments and 
for basic visualization. 

2) Visualization 

This component provides tools for creating 2D figures of the 
resulting compounds and 3D representations of docking 
results. 

3) Storage 

This component provides tools to store results for future 
reuse and sharing. 

F. Third Party Tools used by LISIs 
The LISIs platform uses several, freely available to the 

research community tools to expedite development and 
maximize resources. Specifically, the following 3rd party tools 
are used: (i) Galaxy [36], an open, web-based platform for 
data intensive biomedical research, for the implementation of 
the SWMS; (ii) RDKit [37], an open source chemoinformatics 
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toolkit, used to support all the chemoinformatics related 
functionalities; (iii) R [38], a statistical environment used to 
support data mining, machine learning and statistics related 
functionalities for the generation of e.g. Predictive Models; 
(iv) Chil2 GlamDock [24] and AutoDock Vina [25] docking 
applications used to support docking experiments 
functionalities. 

IV. SHOWCASE AND RESULTS 
LISIs has been used for the implementation of a VS 

experiment for screening molecules from a combined dataset, 
consisted of known estrogen receptor alpha (ER-alpha) 
inhibitors, probable DNA methyltransferase (DNMT) 
inhibitors and molecules obtained from the Indofine 
catalogues, which should have druglike features, satisfy a 
cytotoxicity prediction model and have high docking affinity 
against the ER-alpha protein. Fig. 3 is the graphical illustration 
of the showcase described in detail below.  

At the Input Module level, we used a dataset consisting of 
42 known ER-alpha inhibitors retrieved from PubChem [39], 
~2400 compounds taken from Indofine’s [40] online 
catalogues and 43 DNMT inhibitors listed in [41].  

At the Pre-Processing Module level, a set of 
physiochemical molecular descriptors were calculated 
including molecular weight, hydrogen bond donors,  hydrogen 
bond acceptors, and LogP.  

At the Processing Module level, the following models 
were used:  

a) A custom made Rule of Five (Ro5) filter: specifically 
the parameters used where: (i) Molecular Weight between 160 
and 700, (ii) Hydrogen Bond Donors less or equal to 5, (iii) 
Hydrogen Bond Acceptors less or equal to 10, and (iv) LogP 
less or equal to 5. 

b) A Toxicity Prediction Model: trained with the dataset 
of PubChem [39] Bioassay with id “AID 464”1, consisted of 
706 compounds, 331 were listed as active and 375 were listed 
as inactive. The model used an SVM implementation, 
specifically the Nu-Support Vector Classification (Nu-SVC) 
with linear kernel function and nu2 value equal to 0.5. As a 
validation method Stratified K-fold3 method with K equal to 10 
was used. The resulting sensitivity and specificity were 0.6061 
and 0.6486 respectively. 

c) Docking experiments against ER-alpha: using Chil2 
GlamDock [24] and AutoDock Vina [25]. ER-alpha’s 3ERT4 
conformation was used and was retrieved from RCSB PDB5, 
since we were looking for antagonists to ER-alpha protein. 

                                                           
1 http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=464 

2 Upper bound of the fraction of training error and lower bound of the fraction 
of support vectors. Should be in the interval of (0, 1]. 

3 A variation of K-fold which returns stratified folds, i.e. create folds 
preserving the same percentage for each target class as in the complete set. 

4 http://www.rcsb.org/pdb/explore/explore.do?structureId=3ert 
5 http://www.rcsb.org 

Docking tools were setup to provide us with the best docking 
affinity score. 

At the Post-Processing Module level, a merge of the 
results from the individual processing components was made. 
Finally, at the Output Module level, a selection of molecules 
highly ranked was handpicked; a small sample of those 
satisfying the filters applied are shown in Table I. These 
molecules are currently undergoing further investigation by 
our expert chemoprevention colleagues. 

V. CONCLUDING REMARKS 
The LISIs platform aims to fill a current void in 

chemoprevention, and in general life sciences, research.  Its 
successful deployment will have a major impact on enabling 
chemoprevention researchers to utilize state of the art 
computational techniques to search for promising chemical 
compounds that may lead to the discovery of novel agents 
with chemopreventive properties. These initial results show 
the need and the potential of such a platform for the 
chemoprevention research community. 
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TABLE I.  SAMPLE OF HIGHLY RANKED MOLECULES 

Canonical SMILES Toxicity 
Predict. 

Docking 
Affinity 

ER-alpha 
Inhibitor 

O=C(c1ccc(OCCN2CCCCC2)cc1)c
1c2ccc(O)cc2sc1-c1ccc(O)cc1 

Inactive -11.707346 Y 

O=c1oc2cc(O)ccc2c(-c2ccccc2)c1-
c1ccc(O)cc1 

Inactive -10.768855 N 

COc1ccc(-c2c(=O)oc3cc(O)ccc3c2-
c2ccccc2)cc1 

Inactive -10.283143 N 

O=c1oc2cc(O)ccc2c(-c2ccccc2)c1-
c1ccccc1 

Inactive -10.216389 N 

O=c1oc2ccccc2c(-
c2cc(O)cc(O)c2)c1-c1ccccc1 

Inactive -10.150722 N 

C#CC1(O)CCC2C3CCc4cc(O)ccc4
C3C(OC)CC21C 

Active -9.380188 Y 

O=C([O-
])CNC(=O)Cc1c2c(oc(=O)c1)cc(O)
cc2 

Inactive -7.711231 N 

                                                           
6 http://www.granatum.org 
7 http://www.ucy.ac.cy/goto/biosci/el-GR/andreasc.aspx 
8 http://ucy.ac.cy/goto/biosci/en-US/HOME.aspx 
9 http://www.dkfz.de/en/tox/cancer_chemoprevention.html 
10 http://www.dkfz.de/en/index.html 
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Figure 2.  LISIs Modules and Components 

 
Figure 3.  Showcase workflow 
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