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Abstract—Mammographic breast density refers to the preva-
lence of fibroglandular tissue as it appears on a mammogram.
Breast density is not only an important risk for developing
breast cancer but can also mask abnormalities. Breast density
information can be used for planning individualized screening
and treatment. In this work, statistical distributions of different
texture descriptors and their combination are investigated with
Support Vector Machines (SVMs) for objective breast density
classification: Scale Invariant Feature Transforms (SIFT), Local
Binary Patterns (LBP) and texton histograms. SIFT is an
approach for detecting and extracting local feature descriptors
that are reasonably invariant to changes in illumination, image
noise, rotation, scaling and small changes in viewpoint. The
SIFT descriptor is a coarse descriptor of the edges found in the
keypoints. LBPs provide a robust and computationally simple
way for describing pure local binary patterns in a texture.
They provide information regarding the prevalence of different
edge patterns and uniformity. Textons are defined under the
operational definition of clustered filter responses and provide
a statistical and structural unifying approach for texture charac-
terization. The breast density classification accuracy of the SVM
classifiers modeled on the histograms of the three different sets
of texture features separately and their combination is evaluated
on the Medical Image Analysis Society (MIAS) mammographic
database and the results are presented. The combination of the
statistical distributions of all the different texture features allows
for the highest classification accuracy, reaching over 93%.

Index Terms—breast density, texture, Local Binary Patterns,
Scale Invariant Feature Transforms, textons.

I. INTRODUCTION

Mammographic breast density refers to the prevalence of
fibroglandular tissue as it appears on a mammogram. It
has been shown to be one of the most important risks for
developing breast cancer [1], [2], [3], [4]; first reported by
Wolfe in 1976 [5]. Breast density is associated with both
lower sensitivity and an increased rate of interval cancers.
It is an inherent trait, but can be altered by endogenous
and exogenous hormonal factors, elective estrogen receptor
modulators, diet and generally declines with age [4]. Better
understanding of breast density and how it corresponds to a
significant increase of breast cancer risk as well as the case that
cancers in dense breasts are more often mammographically
occult [6] have led to the need of breast density assessment
and use of the information for supplementary screening using
other imaging techniques such as whole-breast ultrasound

(US) [7]. Information regarding breast density has also been
shown to be cost-effective strategy for sharing risk information
that may become useful in prevention decisions as women
given such information reported being very likely to have
an annual clinical breast examination in addition to their
screening mammogram [8].

X-ray mammography has been the method of choice for
breast cancer population screening. With the development of
novel breast imaging techniques and the endeavor to move
towards individualized screening and prevention, mammo-
graphic breast density can be used to establish appropriate
plans. In the case of dense breasts use of whole breast
ultrasound has been shown to significantly increase breast
cancer detection despite a corresponding increase in false
positives [9]. Magnetic Resonance Imaging (MRI) can also
be used for screening in dense breasts. In addition to US
tomosynthesis may be useful in addition to mammography
for reduction false positive recalls especially in dense breasts
[10].

Thus, breast density and change thereof may be used
for risk assessment, for reducing screening intervals, for the
development of Computer Aided Detection (CAD) systems
with higher sensitivity and specificity, but most importantly
for signaling the necessity for developing individualized risk
evaluation, screening and treatment for achieving the earliest
possible diagnosis for the best prognosis. Mammographic
breast density is a powerful breast cancer risk factor that has
considerable potential in risk stratification and in monitoring
the effects of interventions in risk alteration. Yet, the need
still exists to develop objective methods that provide precise,
simple and reproducible density measures to achieve this [4].

Following Wolfe’s mammographic breast parenchymal den-
sity categorization [5], the American College of Radiology
proposed the Breast Imaging Reporting and Data System (BI-
RADS) [11] mammographic parenchymal density classifica-
tion as follows:

• (i) the breast is almost entirely fat,
• (ii) there are scattered fibroglandular densities,
• (iii) the breast is heterogeneously dense which may lower

the sensitivity of mammography, and
• (iv) the breast tissue is extremely dense, which could

obscure a lesion in mammography.
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Fig. 1. Examples of mammograms from the breast parenchymal density BI-RADS classes a) BI-RADS I, b) BI-RADS II, c) BI-RADS III, d) BI-RADS IV.

The first two classes correspond to low density, low risk
mammograms whilst BI-RADS mammographic breast density
classes III and IV correspond to high density, higher breast
cancer risk classes. The four BI-RADS mammographic breast
density classes can be seen in Figure 1.

Different computer aided techniques and methodologies
have been developed for more objective and reproducible
mammographic breast parenchymal density evaluation and
classification, which fall in two main categories: qualitative
and quantitative [4]. These include physics based models
and evaluation of different parameters based on intensity
and/or texture. Byng et al. [12] propose a semi-automatic area
based quantitative computer measure. Interactive thresholding
and the percentage of the segmented dense tissue over the
segmented breast area provide a relative quantitative evalu-
ation of breast parenchymal density. The method which is
implemented in CumulusT M software is most widely used for
density classification. The Standard Mammogram Form (SMF)
provides the height of interesting tissue i.e. volume of non-fat
tissue in the breast [13] and more recently VolparaT M which
uses a relative - rather than an absolute - physics model which
reduces the need for accurate imaging physics data [14].

As breast density is evaluated on the 2D projection of
the breast on the mammogram, a number of breast den-
sity classification methods have used different texture based
features for density classification. Miller and Astley [15]
investigated texture-based discrimination between fatty and
dense breast types applying granulometric techniques and
Laws texture masks. Petroudi et al. [16] proposed a scheme
that uses statistical based texton models to capture the mam-
mographic appearance within the breast area. Musta [17] et
al. presented an overview of the accuracy of different breast
density classification methods using different features, and
achieve a maximum classification accuracy of 73.3% through
a selection of Haralick and Soh texture features, genetic
search and wrappers. Kallenberg et al. [18] developed a breast
density segmentation algorithm using a set of different features
with information about location, intensity, texture and global
context with a neural network for pixel classification inten-
sity. Keller et al. [19] used adaptive Fuzzy Mean Clustering
combined with Support Vector Machines (SVMs) for cluster
tissue classification. He et al. [20] calculated different texture
features on the grey-level intensity histograms to characterize

different mammogram blocks to different tissue types and
used a binary model based Bayes classifier for BI-RADS
mammogram classification.

This paper investigates the use of histograms of different
texture features: Scale Invariant Feature Transforms (SIFT)
[21], Local Binary Patterns (LBP) [22], texton histograms [23]
and their combination evaluated on mammograms with SVMs
[24] for breast parenchymal density classification. The method
is developed and quantitatively evaluated using the Medical
Image Analysis Society (MIAS) mammogram database [25]
and the provided 3 category density classification.

II. METHOD

For breast density characterization the mammograms are
pre-processed and normalized as in [16] and the mammo-
graphic breast region is segmented. Following, the different
features are evaluated on the segmented breast region. Each
training image is represented by a vector(s)/histogram(s), and
SVMs [24] are trained to discriminate vectors corresponding
to positive and negative training images. Finally the trained
SVMs are applied to testing images.

A. Evaluation of the texture features

Three different texture features are evaluated and combined
for density characterization: SIFT, LBP and textons. SIFT is an
approach for detecting and extracting local feature descriptors
that are invariant to translation, scaling, and rotation, and
partially invariant to illumination changes and affine or 3D
projection [21]. LBPs provide a robust and computationally
simple way for describing pure local binary patterns in a
texture with low computational complexity and relatively
insensitive to changes in illumination [22]. Textons are defined
under the operational definition of clustered filter responses
[26] and provide a statistical and structural unifying approach
for texture characterization [23].

1) Scale Invariant Feature Transform - SIFT: The SIFT
approach which was proposed by Lowe [21] transforms an
image into a collection of local feature vectors which are
translation, scaling and rotation invariant and has been shown
to be a robust keypoint descriptor in different image classifica-
tion, retrieval and matching applications [27]. SIFT provides
keypoint detection through the identification of interesting
points in the scale space. The SIFT descriptor is a coarse
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descriptor of the edges found in the keypoints. First the
images are convolved with Gaussians at different scales and
the Differences of Gaussians images are generated from the
adjacent smoothed images. The detection stages for SIFT
features include scale space extrema detection where the
interesting points are identified as local extrema of differ-
ences of Gaussians, keypoint localization through interpolation
of nearby data, orientation assignment where the gradient
orientation histogram is computed in the neighborhood of
the keypoint and generation of keypoint descriptors. Once a
keypoint orientation has been selected, the feature descriptor
is computed as a set of orientation histograms (with 8 bins)
on 4 x 4 pixel neighborhoods. The SIFT features were first
used for breast density classification by Bosch et al. [28].

The SIFT descriptors are computed on a regular grid with
spacing M pixels over N regular support patches, as in [28]. A
SIFT keypoint vocabulary is build through vector quantization
of descriptors from a set of training images using k-means (k∼
1000). Following each descriptor is assigned to the one closest
to it in the SIFT vocabulary and the images are represented
with corresponding histograms.

2) Local Binary Patterns - LBP: LBPs are evaluated by
calculating the local binary difference between the gray value
of a pixel x (i.e. central pixel) and the gray values of P pixels
in a local neighborhood of x placed on a circle of radius
R [22]. An LBP code for a neighborhood is produced by
multiplying the thresholded values with weights given to the
corresponding pixels, and summing up the result. However,
this representation is rotationally variant, thus Ojala et al. [22]
introduced rotational invariance by performing P - 1 bitwise
shift operations on the binary pattern and selecting the smallest
value. The number of changes between the zeros and ones
in the pattern signify whether the corresponding local texture
is uniform i.e. there are a limited number of transitions or
discontinuities in the circular presentation of the pattern. [29].
A pattern is defined uniform if the number of transactions
between 0 and 1 of the sequence is less or equal to two. The
most frequent uniform binary patterns correspond to edges,
corners, and spots and can be regarded as important feature
detectors triggered by the best matching pattern.

Here, the basic LBP code for a neighborhood is used,
produced by multiplying the thresholded values in the central
pixel’s local neighborhood with weights given to the corre-
sponding pixels, and summing up the result [22]. For each
pixel x, an 8-bit number b1 b2 b3 b4 b5 b6 b7 b8 is created,
where bi = 0 if neighbor i has value less than or equal to the
central pixel’s x value and 1 otherwise. The histogram of all
the corresponding values for the all the pixels is evaluated to
describe the given image.

3) Statistical Distribution of Textons: Textons, as proposed
by Julesz [30], are the primitives of texture, and structural
models of texture are based on the view that texture are com-
posed of primitives in spatial arrangements. For the purposes
of this work textons are defined under the operational defi-
nition of Leung and Malik [26] as clustered filter responses.
Evaluation of the texton histogram for a mammogram follows

Fig. 2. Breast density classification presented methodology.

the methodology presented in [16].
For the evaluation of the texton statistical distribution the

following steps need to take place. Initially the texton dictio-
nary must be derived. Following, segmentation of the breast
region [31] the resulting images from the training set are
filtered using the Maximum Response 8 (MR8) filter bank
proposed by Varma and Zisserman [23]. After the filtering
using the filter bank, each pixel is associated with a vector that
holds the filter response corresponding to each filter in the filter
bank. The filter responses over all the pixels in the images’
regions of interest are aggregated. The texton dictionary is
created by clustering these aggregated filter responses over all
images with 10 textons per breast density class using the K-
Means algorithm.

Given the texton dictionary, each image pixel in the breast
region of each mammogram is mapped to the texton closest
to it in the filter response space. This step provides the
image’s texton map on which the texton histogram, showing
the relative frequency of occurrences of the textons in the
texton dictionary is evaluated.

B. Support Vector Machines

Mammographic breast density classification of the different
texture histograms is achieved using SVMs. SVMs [32], [24]
are chosen because of their ability to generalize well in high
dimensional spaces. They are based on statistical theory and
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aim to determine the location decision boundaries that result in
the optimal separation of classes [24]. SVMs nonlinearly map
the training data in the input space using a kernel function
to a higher dimensional feature space. Kernel functions are
applied to describe a similarity relationship between the sets to
be classified. Following, SVMs determine a decision boundary
in the feature space to distinguish the classes by creating the
optimal separating hyperplane [24]. In the two-class problem,
where the classes are linearly separable the SVM selects the
linear decision boundary that minimizes the generalization
error. The method finds the hyperplane that leaves the largest
possible fraction of points of the same class on the same side,
while maximizing the distance of either class from it. This
optimum hyperplane is produced by maximizing the minimum
margin (i.e. the sum of the distances to the hyperplane from
the closest points of the two classes between the two sets).
Thus, the resulting hyperplane is depended on border training
patterns only called support vectors.

SVMs have been shown to generalize well on difficult
image classification problems where the only features are
high dimensional histograms [33]. SVMs are therefore in-
vestigated using the statistical distributions of the different
texture features as presented above and their combination,
representing different characteristics of the breast regions.
The methodology for the combination of the different texture
statistical distribution vectors and SVM classification is shown
in Fig. 2. Different kernel functions were also investigated
and the Gaussian Radial Basis Function (RBF) was chosen
as it resulted in the best separation between the different
density classes. Since the SVMs were originally developed
for two-class classification, for the multi-class breast density
classification an ensemble of binary classifiers is used, where a
binary classifier is trained for each pair of classes. The decision
is then taken by combining the partial decisions of the single
members of the ensemble [34]: unknown images are classified
using majority voting strategy among them. Tenfold cross
validation is used for training and evaluating the corresponding
SVMs.

III. RESULTS

The algorithm is evaluated on a set of mammograms from
the MIAS mammographic database [25]. The MIAS database
contains 322 mammograms corresponding to 161 cases. The
mammograms in the database are classified to three different
density classes, fatty, fatty-glandular and dense glandular.
Thus for the purposes of this work the mammograms are
automatically classified to one of these three classes. Since
there is different representation of the three classes in the
database, only 62 mammograms are chosen per density class.

The performance of the SVMs evaluated for breast den-
sity classification using tenfold cross validation modeled on
each of the histograms of the corresponding texture features
is shown in Table I. The best agreement with the density
annotations provided with the MIAS database was 93.5484%.
Accuracy is calculated as the percentage of correctly classi-
fied mammograms in a breast parenchymal density category

TABLE I
CLASSIFICATION ACCURACY RESULTS FOR THE MIAS BREAST DENSITY

CHARACTERIZATION USING SVMS MODELED ON THE REPORTED
TEXTURE FEATURES STATISTICAL DISTRIBUTIONS

MIAS Density Classification Accuracy%
SVM trained on

SIFT 74.7312%

LBP 82.7957%

Textons 75.8065%

SIFT-LBP-Textons 93.5484%

over the ground truth total number of mammograms in that
category. Figure 3 shows the classification for each of the
mammograms in every category.

IV. DISCUSSION

This paper investigates the use of SVMs with different
statistical distributions of different texture features i.e. SIFT,
LBP and textons. The classification accuracy for the SVM
when all texture feature distributions are used reaches over
93%. The different texture features used seem to capture
different breast region characteristics. The SIFT captures local
oriented features over different visual scales. LBP provide
information whether the region of interest (ROI) is relatively
uniform. Textons can be through of as the building blocks of
the present texture the same way phonemes make up speech
[30].

The presented method compares favorably with other meth-
ods presented in the literature. Petroudi et al. [16] evaluated
texton histograms using chi-square distance achieved a clas-
sification accuracy of 76% but on a different database. Blot
and Zwiggelaar [35] using Gray Level Co-occurrence matrices
and a method by Karssemeijer [36] achieve 65% accuracy for
classifying the MIAS images to the MIAS given 3-class den-
sity categorization [25]. Bosch et al. [28] used a combination
of SIFT and textons histograms resulting form local image
patches achieving a classification accuracy of 91.4%. Oliver
et al. [37] extracted morphological and texture features from
the segmented breast areas and used a Bayesian combination
of a number of classifiers achieving 84% accuracy.

From the evaluation of the SVMs with the histograms of the
different texture feature one can see that the LBPs achieve the
best classification accuracy when used alone, whilst training
the SVM with the SIFT features’ histogram achieves the
worst classification result. Further investigation of the different
parameters for the evaluation of the different SIFT features is
warranted. In addition, the SVMs achieve the highest classifi-
cation when they are trained on all the different texture features
distributions. However, these distributions have different sizes.
Different combinations of different features with different
classifiers may result in better classification accuracy.

V. CONCLUSION

Different texture features and their combination are used
with SVMs for breast density classification. Training the
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Fig. 3. The breast density classification results for the mammograms from the MIAS database. The results are shown separately for the SVMs trained with
the statistical distributions of the different texture features: a) SIFT, b) LBP, c) Texton, d) SIFT-LBP-Texton.

SVM on the statistical distributions of all the texture features
results in the best classification accuracy of 93.4%, when
evaluated on the MIAS [25] database on the the corresponding
3-category classification provided. Future work will involve
the use of different classifiers and classification methods for
density classification. In addition, the corresponding features
will be evaluated for the segmentation parenchymal densities
in mammograms.
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