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Abstract—We consider a linear dynamic model for tumor
growth evolution. A number of temporal statistical models for
tumor growth exist in the literature. In the majority of these cases
the employed models are formulated in a deterministic context,
providing no information on their uncertainty. Some of these
are theoretically well defined and very useful in practice, e.g.
to define general optimal treatment protocols through nonlinear
constrained optimization. Nevertheless a challenging task is the
estimation of the model parameters for a specific individual since,
especially in humans, it is not feasible to collect a large number
of tumor size values with respect to time, as the tumor is removed
immediately after diagnosis in most cases. Therefore, we suggest
a probabilistic model for personalized sequential tumor growth
prediction, given only a few observed data and an a priori
information regarding the average response to a specific type
of cancer of the population to which the subject belongs. We
validated the proposed model with experimental data from mice
and the results are promising.

Index Terms—Personalized sequential tumor growth predic-
tion, Linear Dynamic Modeling, Bayesian forecasting, Gompertz-
law of growth, mouse xenograft model.

I. INTRODUCTION

Development of mathematical models describing the evo-
lution of a tumor over time has had a significant effect on
the understanding of the biological growth dynamics, the
evolution of resistance to anti-cancer therapy and the design
of optimal control strategies through constrained optimization.
Even a shallow look at the literature reveals a large number of
growth models (compartmental ordinary differential equations
or partial differential equations, cellular-automata, mechani-
cal, agent-based models and many more) describing (through
various physiological phenomena) the temporal and spatial
dynamics of cancer evolution before and after vascularization.
The more complex a model is, the more phenomena/processes
it takes into account, but at the same time, both the theoretical
and practical analyses become considerably harder (e.g. iden-
tifiability problems; estimation of the unknown parameters is
not always possible due to small sample size and large number
of unknowns). Thus, a trade-off between these two aspects
must be sought.

The main issue with the deterministic modeling techniques
is that the within and between subject variability is ignored. In
addition, the unique response to carcinogenesis of a specific
person in the face of uncertainty is ostentatiously ignored. See,
for example, [1], [2], [3] and [4] who include stochastic terms

in the deterministic models, and [5] for an example of adaptive
personalized optimal control.

From experimental data, the growth rate of a malignant
tumor is characterized as exponential at the beginning of
the course of the disease followed by a linear growth to-
wards an asymptote which is usually termed as maximum
carrying capacity (sigmoidal shape). Therefore several statisti-
cal/phenomenological growth curves have been used to model
this or similar behavior, such as exponential, logistic, Weibull,
Gompertz and hyperbolastic. For example, see [3], [6] and [7].
Here we deal with a model obeying the Gompertz-law, see [8],
due to its simplicity, popularity and ability to fit experimental
data well. Extension of our model to any continuous function
that describes the temporal tumor dynamics is straightforward.

Despite their simplicity, Gompertz-type models have proven
to be appropriate to predict the average growth behavior
of a tumor. Among others, see [1] and [9]. However, the
performance of such models depends crucially on consistent
estimation of their unknown parameters. In order to achieve
this, animal experiments are usually carried out to observe
a sample of the tumor size as time passes (univariate time
series) for each subject on which the estimation step is based
on. Note though, that each subject has a unique response to
carcinogenesis, i.e. different values of the model parameters
are obtained for each individual. Nonetheless, in reality, when
cancer is diagnosed in a given subject, it is almost always the
case (unlike other diseases, e.g. diabetes, and infections, e.g.
HIV) that at most a sample of a small size can be observed,
since it is very difficult and ethically inappropriate (at least
for humans) to leave the tumor untreated in order to get an
adequate sample of the tumor size as time evolves. In the
case of a very small sample size, maximum likelihood or
least squares estimation are not advisable since the resulting
model’s estimated parameters will have very large variance,
yielding meaningless results.

Hence, even though theoretically attractive, the aforemen-
tioned models for tumor growth dynamics are not directly
applicable for either forecasting or personalized optimal con-
trol. In this context, the objective of this paper is to suggest
(i) a probabilistic tumor growth model, (ii) a personalized
recurrent updating procedure for the model parameters and
(iii) a sequential forecasting of the tumor dynamics under the
Bayesian framework. The proposed model is intended to be
used for adaptive optimal control towards personalized optimal
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treatment strategies in mice experimentations.
In the next section we define the Gompertz growth model.

The dynamic linear model (DLM) and the Bayesian forecast-
ing technique under normality are also introduced in section 2
along with a brief discussion on the derivation details and
asymptotic behavior of the proposed model and updating
recurrence relationships. In section 3 we validate our model
with experimental data from mice. Finally, section 4 consists
of the concluding remarks and prospects of the suggested
DLM.

II. STATE-SPACE MODEL AND GROWTH FUNCTION

Robustness is crucial for a learning system, especially in
this particular case where limited data are available. In what
follows we are concerned with modeling and forecasting
single time series, i.e. the volume, in 𝑚𝑚3, of the tumor in
time. A more complete description of complex physiological
phenomena (such as the dynamic growth of a tumor in a given
subject), with possibly many different sources of uncertainty,
can be achieved by obtaining probabilistic inferences about
any quantity of interest. In this context, we can use statistical
models to predict future values of the time series of interest
and the corresponding model parameters as well as the un-
certainty of these estimates. As described in detail below, the
Bayesian forecasting procedure can be used to this end.

A. The Gompertz growth law

Let 𝑁𝑡 denote the volume, in𝑚𝑚3, of the tumor at time 𝑡 >
0. As in [3], the deterministic Gompertz-type tumor growth
function is defined by the solution of the ordinary differential
equation:

𝑑𝑁𝑡

𝑑𝑡
= 𝑐1𝑁𝑡 − 𝑐2𝑁𝑡 ln(𝑁𝑡) (1)

where 𝑐1 represents the tumor’s growth rate (depending on the
proliferation rate) and 𝑐2 is an anti-growth factor (e.g. due to
antiangiogenic processes). The parameters 𝑐1 and 𝑐2 define the
evolution of different tumor types and vary significantly with
the type of cancer, between subjects and within subjects (as
time evolves).

The solution of (1) is a sigmoidal function given by:

𝑁𝑡 = exp

[
𝑐1
𝑐2

−
{
𝑐1
𝑐2

− ln(𝑁0)

}
exp(−𝑐2𝑡)

]
(2)

with 𝑁0 > 0 being the initial tumor’s volume. The function
in (2) describes an initial exponential increase followed by a
linear behavior towards an asymptote. It can be shown, see
[3] for example, that the largest tumor volume that a specific
subject can tolerate is given by exp(𝑐1/𝑐2). After defining
𝑌𝑡 = ln𝑁(𝑡) and taking the natural logarithm on both sides
of (2) we obtain:

𝑌𝑡 =
𝑐1
𝑐2

−
{
𝑐1
𝑐2

− ln(𝑁0)

}
exp(−𝑐2𝑡), (3)

which shows, at a given 𝑡 and 𝑐2, a linear relationship between
𝑌𝑡 and exp(−𝑐2𝑡). Therefore, embolden from (3) we are

now ready to proceed to the development of our probabilistic
model for personalized sequential prediction of tumor growth
dynamics.

From this point onwards, we do not represent the random
quantities and their corresponding realized values separately.
Thus, prior to observing the value of the tumor volume at time
𝑡, 𝑌𝑡 denotes the uncertain random quantity (volume, in 𝑚𝑚3,
of the tumor at time point 𝑡), which becomes certain when
observed. The series 𝑌1, 𝑌2, . . . need not be equally spaced in
time, although in the sequel we refer to equally-spaced series
in time unless otherwise specified.

B. The Dynamic Linear model

Statistical modeling of time series is commonly performed
using various types of dynamic models, often termed as state-
space models, that express and model the behavior of a
system over time which is regarded as the driving force. When
constructing a forecasting problem using dynamic models
we essentially formulate a robust parametric model having
parameters depending on time which allows (i) representa-
tion of all available information with probability distributions
by employing conditional independence and (ii) sequential
updating of the model parameters and forecasting of future
observations. Among others, see [10], [11], [12] and [13] for
an extensive introduction in Bayesian statistics, forecasting and
time series analysis.

Let 𝐼𝑡 be the set of all available information at time 𝑡. As
time passes, new observations become available to the model
revising our information. Thus 𝐼𝑡 = {𝑌𝑡, 𝐼∗𝑡 , 𝐼𝑡−1}, with 𝐼0 =
{𝑌0, 𝐼∗0}, where 𝐼∗𝑡 represents any extra relevant information
obtained at time 𝑡, e.g. an expert opinion that may alter our
beliefs on how the series 𝑌𝑡+𝑘, for 𝑘 > 0, will evolve.

Definition 1. A family 𝐹 of probability distributions on Θ
is said to be conjugate, or closed under sampling, for a
likelihood function 𝑝(x∣𝜃) if, for every prior 𝑝∗ ∈ 𝐹 , the
posterior distribution 𝑝(𝜃∣x) also belongs to 𝐹 .

A Bayesian information updating combines information
from different sources in a coherent way. This is achieved
by the Bayes rule, according to which

𝑝(𝜃∣𝑥) = 𝑝(𝑥∣𝜃)𝑝∗(𝜃∣𝑥)∫
Θ
𝑝(𝑥∣𝜃′)𝑝∗(𝜃′∣𝑥) d𝜃′

.

Thus in order to have the explicit expression of the posterior
we must be able to perform the integral appearing in the
denominator. One way to do so is to ensure that both 𝑝(𝜃∣𝑥)
and 𝑝(𝜃) belong to the same family of distributions, i.e. use
conjugate priors as in definition 1. Note though that sometimes
this may prove impracticable.

Now, from (3), let us propose the following representation
for the growth model:

𝑌𝑡 = 𝛼1 + 𝛼2𝑋𝑡, (4)

where 𝑋𝑡 = exp(−𝑐2𝑡), 𝑐2 is fixed and the coefficients 𝛼1

and 𝛼2 are unknown. Since it is quite common to observe
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discrepancies between subjects and deviations from the base-
line response to a particular form of cancer, as well as due
to various physical, mechanical and chemical factors, it is
reasonable (in the face of uncertainty) to treat the parameters
𝛼1 and 𝛼2 as random variables. In particular, we model the
coefficients as a simple random walk that equips us with a
powerful tool towards adaptation to changes in the underlying
processes.

The most popular dynamic model is the Gaussian Dynamic
Linear Model, referred to simply as dynamic linear model,
or DLM, where normality is assumed. Such models that are
associated with the normal theory are simple, flexible, analyti-
cally manageable and complete. Hence, in what follows all the
conditional, marginal and joint distributions are Gaussian. The
probability density function of a normally distributed random
variable U, with mean 𝜇 and variance 𝜎2, is given by

𝑝(𝑈 = 𝑢∣𝜇, 𝜎2) = (2𝜋𝜎2)−1/2 exp
{
− 1

2𝜎2
(𝑢− 𝜇)2

}
. (5)

Under Definition 1, an appropriate DLM that describes
the evolution of (4) over time is defined in the additive
representation by

Observation:

𝑌𝑡 = 𝛼1,𝑡 + 𝛼2,𝑡𝑋𝑡 + 𝑣𝑡, 𝑣𝑡 ∼ 𝑁(0, 𝑉𝑡)

System/State:

𝛼1,𝑡 = 𝛼1,𝑡−1 + 𝑤1,𝑡

𝛼2,𝑡 = 𝛼2,𝑡−1 + 𝑤2,𝑡

wt ∼ 𝑁(0,𝑊𝑡)

Initial Information:

(𝛼1,0∣𝐼0) ∼ 𝑁(𝑐1/𝑐2, 𝜁1)

(𝛼2,0∣𝐼0) ∼ 𝑁(ln𝑁0 − 𝑐1/𝑐2, 𝜁2)
with 𝑋𝑡 = exp(−𝑐2𝑡), where 𝑐1 and 𝑐2 are assumed to be
fixed such that 𝑌𝑡 has the average/baseline growth behavior for
a particular population and type of cancer, with 𝜁1, 𝜁2 ∈ ℝ

+

representing our uncertainty on the initial guess of the model
parameters, 𝑣𝑡 is independent of (𝜃t,Yt−1), wt is indepen-
dent of (𝜃t−1,Yt−1), where we use wt = (𝑤1,𝑡, 𝑤2,𝑡)

′, 𝜃t =
(𝛼1,𝑡, 𝛼2,𝑡)

′ and the generic notation ut = {𝑢1, . . . , 𝑢𝑡}. The
choice of the observational, 𝑉𝑡, and evolution, 𝑊𝑡, variances
is discussed in section II-B1.

Let Ft = (1, 𝑋𝑡). The 𝑘-ahead forecast function {𝑓𝑡(𝑘) :
𝑘 = 1, 2, 3, . . . } is defined by

𝑓𝑡(𝑘) = 𝐸
(
𝑌𝑡+𝑘∣𝑌 𝑡

)
= F𝑡+𝑘 𝐸

(
𝜃𝑡+𝑘∣𝑌 𝑡

)
since 𝑣𝑡+𝑘 is independent of 𝑌 𝑡 and 𝐸(𝑣𝑡+𝑘) = 0. Thus the
distribution of the forecast 𝑌𝑡 on the basis of the information
in Yt−1 is normal with mean 𝑓𝑡 = 𝐸

(
𝑌𝑡∣Yt−1

)
and variance

𝑄𝑡 = Var
(
𝑌𝑡∣Yt−1

)
. After observing 𝑌𝑡, the likelihood for 𝜃t

is proportional to the observed density expressed as a function
of 𝜃t. Consequently the updating recurrence relationships for
the parameters of our model and the one-step ahead forecast

error 𝑒𝑡 = 𝑌𝑡 − 𝐸
(
𝑌𝑡∣Yt−1

)
are derived using the concept

of conditional independence (the future is independent of the
past, given the present) and the Bayes theorem which states
that the posterior distribution of the parameter vector at any
time point 𝑡 > 0 is proportional to the prior multiplied by
the observed likelihood. At any time point 𝑡 > 1, the prior is
equal to the posterior at 𝑡 − 1. All the information regarding
the future is embedded in the posterior distribution.

Definition 2. A region 𝑅𝑎 ⊂ Θ is said to be a highest density
region for 𝜃 of size 𝑎 with respect to 𝑝(𝜃) if (i) and (ii) hold,
where

(i) 𝑃 (𝜃 ∈ 𝑅𝑎) = 𝑎
(ii) 𝑝(𝜃1) ≥ 𝑝(𝜃2) for all 𝜃1 ∈ 𝑅𝑎 and 𝜃2 /∈ 𝑅𝑎.

In the sequel, if 𝑝(𝜃) is either a prior, posterior or predictive
density, we refer to highest prior, posterior or predictive
density regions. More details and an alternative sketch of the
proof of the updating recurrent equations are found, among
others, in [11] and [12].

1) Unknown Observational and Evolution Variances: The
variance 𝑉𝑡 of the observational error 𝑣𝑡 describes at any time
point 𝑡 the uncertainty about our beliefs on the unknown
random fluctuations around the average growth rate of the
unique subject’s tumor growth rate. The variance 𝑊𝑡 of the
evolution error vector w𝑡 characterizes the evolution of our
system as time passes and at 𝑡 = 0 it quantifies the uncertainty
about the magnitude of the difference of the unique growth rate
of the subject from the average growth rate. It is evident from
experimental and clinical data that both 𝑉𝑡 and 𝑊𝑡 are not
precisely known and vary with time. See, among others, [3].

We suggest explaining the uncertainty about 𝑉 using the
standard Bayesian conjugate analysis. See [14] and [12] for
example. Let 𝜙 = 1/𝑉 be the precision variable. Then, we
assume that 𝜙 follows a gamma distribution (inverse gamma
for V) and define the initial information

(𝜙∣𝐼0) ∼ 𝐺(𝑛0/2, 𝑑0/2),
where 𝑛0, 𝑑0 ∈ ℝ

+ and 𝐺 stands for the gamma prior
distribution having a probability density function given by

𝑝(𝜙∣𝐼0) = (𝑑0/2)
𝑛0/2

Γ(𝑛0/2)
𝜙𝑛0/2−1 exp(−𝜙𝑑0/2),

for 𝜙 ∈ ℝ
+ and Γ(𝑢) = (𝑢 − 1)!. Note that the mean of

this prior distribution is 1/𝑆0, where 𝑆0 = 𝑑0/𝑛0 is the prior
estimate of 𝑉 . Thereupon, when 𝑉 is unknown, it can be
shown (see chapters 2, 4 and 17 in [11] among others) that
all distributions for the level parameters and forecasts are now
based on t-distributions that replace the normal densities. In
the sequel we denote the non-standardized t-distribution with
𝑛 degrees of freedom, mode 𝑚 and scale 𝐶 by 𝑇𝑛[𝑚,𝐶], with
probability density function given by:

𝑝(𝑢) ∝
{
𝑛+

(𝑢−𝑚)2

𝐶

}−(𝑛+1)/2

.

Therefore, in order to specify our initial prior beliefs, in
addition to setting the prior parameter values for the vector
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𝜃𝑡 we need to indicate values for 𝑛0 and 𝑑0 for the distribu-
tion of 𝑉 . However, in our particular case the observational
variance is not constant through time. On the contrary, it varies
stochastically and unpredictably. Therefore, as in chapter 10 of
[11], in our model we suppose that 𝑉 is subject to some steady
random disturbance over the time interval 𝑡 − 1 to 𝑡. Hence,
we generate 𝜙𝑡 from 𝜙𝑡−1 using some form of a random
walk as follows. Let 𝛾𝑡 ∼ 𝐵{0.95𝑛𝑡−1/2, 0.05𝑛𝑡−1/2} be
independent of 𝜙𝑡−1, where 𝐵 represents the beta distribution
such that

𝑝(𝛾𝑡∣𝐼𝑡−1) ∝ 𝛾0.95𝑛𝑡−1/2−1
𝑡 (1− 𝛾𝑡)0.05𝑛𝑡−1/2−1

for 0 < 𝛾𝑡 < 1 with 𝐸(𝛾𝑡∣𝐼𝑡−1) = 0.95. Note that 𝛾1, 𝛾2, . . .
are identically and independently distributed. Then, at any time
point 𝑡 > 0 it is straightforward to deduce that under the prior

(𝜙𝑡−1∣𝐼𝑡−1) ∼ 𝐺(𝑛𝑡−1/2, 𝑑𝑡−1/2),

which is the posterior at 𝑡 − 1, the resulting distribution of
𝜙𝑡 is still a gamma distribution. Therefore in our model the
sequence 𝜙𝑡 is changing from 𝑡− 1 to 𝑡, for all 𝑡 > 0, by an
independent random factor 𝛾𝑡/0.95. For the limiting behavior
of 𝑛𝑡 and consequently 𝑆𝑡 see the following section.

For the latter unknown variance a natural thought is to
consider that, between observations, the addition of the error
wt would lead to an additive increase of the initial uncertainty.
Hence, the evolution variance is usually estimated in practice
using the discounted variance learning by defining 𝑊𝑡 to be a
fixed proportion of Ct−1, i.e. 𝑊𝑡 = 𝛿 ×Ct−1, for all 𝑡 > 0,
with 𝛿 ≥ 0, where Ct = Var(𝜃t∣𝑌 𝑡) is a 2×2 diagonal matrix.
Between observations, the addition of the error wt leads to an
additive increase of (100× 𝛿)% of the initial uncertainty C.

C. Model Specification

We are now in position to define our model and the one
step-ahead forecasts:

Observation:

𝑌𝑡 = F′
t𝜃t + 𝑣𝑡, 𝑣𝑡 ∼ 𝑁(0, 1/𝜙𝑡)

System:

𝜃t = 𝜃t−1 +wt, wt ∼ 𝑇𝑛𝑡−1(0,Wt)

Precision:

𝜙𝑡 = 𝛾𝑡𝜙𝑡−1/0.95, 𝛾 ∼ 𝐵(0.95𝑛𝑡−1/2, 0.05𝑛𝑡−1/2)

Information:

(𝜃t−1∣𝐼𝑡−1) ∼ 𝑇𝑛𝑡−1(mt−1,Ct−1)

(𝜃t∣𝐼𝑡−1) ∼ 𝑇𝑛𝑡−1(at,Rt)

with
at = mt−1, Rt = Ct−1 +Wt

(𝜙𝑡−1∣𝐼𝑡−1) ∼ 𝐺(𝑛𝑡−1/2, 𝑑𝑡−1/2)

(𝜙𝑡∣𝐼𝑡−1) ∼ 𝐺(0.95𝑛𝑡−1/2, 0.95𝑑𝑡−1/2)

𝑆𝑡−1 = 𝑑𝑡−1/𝑛𝑡−1

Forecast:

(𝑌𝑡∣𝐼𝑡−1) ∼ 𝑇0.95𝑛𝑡−1
(𝑓𝑡, 𝑄𝑡)

with

𝑓𝑡 = F′𝛼t, 𝑄𝑡 = F′
tRtFt + 𝑆𝑡−1.

For more details see [11] and [12]. The posterior mean mt

is equal to the prior mean mt−1 plus a correction term which
is proportional to the forecast error 𝑒𝑡. The adaptive coefficient
At = RtFt/𝑄𝑡 controls the magnitude of the correction
term which is based on the relative precisions of the prior,
through Rt/Qt, and the likelihood from the value of Ft. An
alternative representation for mt as a function of the adaptive
coefficient At is given by

mt = At𝑌𝑡 + (1−At)mt−1

showing that mt is a weighted average of the prior estimate
and the observation. The posterior precision C−1

t is always
larger than the corresponding prior R−1

t , hence the posterior
for the parameter vector will never be more diffuse (less
informative) than the prior. It is not hard to show that 𝑛𝑡
is 𝑂(1) with 𝑆𝑡 having the form of an exponentially moving
average of the standardized 𝑒𝑡; this enforces adaptation to new
data by discounting the old ones as time evolves.

III. IN VIVO TUMOR GROWTH EXPERIMENTS

In this section we test the predictive performance of the
suggested model using experimental data. At time 𝑡 = 0 we
start forecasting the future (one step-ahead, i.e. forecasting 𝑌𝑡
on the basis of the information in Yt−1 for all 𝑡 ≥ 0) using
the initially available information (see following subsections),
and then as time passes we update this behavior and adapt
towards the individual’s unique characteristics.

A. Methods and Materials

Tumors were prepared as described in previous work [15]
by implanting a small piece (1𝑚𝑚3) of viable tumor tissue
from a source tumor animal into the flank or mammary fat pad
(mfp) of a severe combined immunodeficient (SCID) mouse.
Specifically, the following four cancer cell lines were used:
human glioblastoma 𝑈87 (flank, number of mice subjects
𝑛𝑠 = 6), human fibrosarcoma 𝐻𝑇1080 (flank, 𝑛𝑠 = 11),
murine mammary adenocarcinoma 4𝑇1 (mfp, 𝑛𝑠 = 12) and
murine mammary adenocarcinoma 𝐸0771 (mfp, 𝑛𝑠 = 6).
Tumor growth was monitored on a daily basis and its planar
dimensions (𝑥, 𝑦) were measured with a digital caliper every 2
days. The volume of the tumor was estimated from its planar
dimensions using the volume of an ellipsoid and assuming that
the third dimension 𝑧 is equal to

√
𝑥𝑦. Therefore, we have that

the volume 𝑉 equals (4𝜋/3)(𝑥𝑦𝑧/8), which yields

𝑉 =
𝜋

6
(𝑥𝑦)3/2.
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Fig. 1. Plot of 𝑁𝑡 against mice (left panel) and 𝑌𝑡 against time (right
panel) for the 𝐻𝑇1080 cancer cell line.

B. Experimental settings

Following common practice, we randomly selected one third
of the observed sample as test data and the remaining two
thirds served as our training data. This choice corresponds to
training samples of size 4, 7, 8 and 4 for the cancer cell lines
𝑈87, 𝐻𝑇1080, 4𝑇1 and 𝐸0771, respectively.

By reason of the large variability, we use order statistics, i.e.
the sample median, rather than the sample mean to define the
initial values. In particular, we construct a baseline subject
having a maximum carrying capacity, i.e. exp(𝑐1/𝑐2), equal
to the median estimated carrying capacity of the training set
for each of the cancer cell lines, with 𝑐2 representing the
median estimated antigrowth factor of each of the training sets
and 𝑐1 being equal to the product of the log median plateau
size and 𝑐2. Consequently, we set the initial information for
the model parameters as 𝑚0 = (𝑐1/𝑐2, ln𝑁0 − 𝑐1/𝑐2) and
𝐶0 = diag(0.1, 0.1). The choice for the a priori uncertainty is
such that the log tumor growth for a given subject from 𝑡 = 0
to 𝑡 = 1 will have the baseline slope, estimated using the
training set, with standard deviation

√
0.1. This value repre-

sents a large uncertainty, which reflects the large discrepancies
between subjects in practice. An extensive simulation study
using the training set led us to set the pilot parameters 𝛿, 𝑛0
and 𝑑0, used in the definition of our model, equal to 0.25,
1 and 0.001 respectively. We found this choice to work well
for the various types of cancer cell lines we considered, even
though they had very different scales and features. Note that
this choice corresponds to a small initial point estimate of the
observational variance.

We assume that the only available information about each
subject is the initial tumor value 𝑁0 at time point 𝑡 = 0. Then
from what we have learned from the training set regarding
the baseline response of mice to each cancer cell line, we
predict the log volume of tumor at 𝑡 = 1. As soon as the
new observation comes in at 𝑡 = 1, the model parameters are
updated and a new prediction, that is based on the posterior
distribution at 𝑡 = 1, for the time point 𝑡 = 2 is obtained.
The sequential updating and the Bayesian one step-ahead
forecasting continues for all 𝑡 ≤ 𝑛 − 1. The obtained single
time series for each mouse are equally spaced, i.e. the time
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Fig. 2. From left to right: One-step ahead forecasts for a randomly
selected mouse from test set corresponding to the 𝐻𝑇1080, 𝐸0771,
4𝑇1 and 𝑈87 cancer cell line; Blue-White dots: Forecast values 𝑓𝑡,
Black dots: Observations 𝑌𝑡, Blue dotted lines and squares: 90%
posterior probability intervals.

interval from time point 𝑡 to 𝑡+ 1 is equal for all 𝑡 ≥ 0.

C. Results

In what follows we show only a summary of the results
which were representative for the entire set of results.

The left panel of figure 1 shows the tumor volume plotted
against mice for the 𝐻𝑇1080 cancer cell line. There is clear
evidence that the within subject standard deviation varies with
subject. In the right panel we plot 𝑌𝑡 against time for the
same cancer cell line. From our data, there is no evidence
against our assumptions that (i) the observational variance 𝑉𝑡
is not constant and (𝑖𝑖) the random variable 𝑌𝑡, at any time
point 𝑡, is normally distributed. Figure 2 shows the one-step
ahead forecasts for each subject in the test data set of each
cancer cell line considered in our in vivo experiments, along
with the highest posterior density intervals (HPD) as defined
in Definition 2.

The overall one step-ahead predictive performance of the
suggested model is satisfactory. The first prediction at time
point 𝑡 = 1 is solely based on the baseline (initial) values
of the model parameters. Then, as time passes, the new
observations update the model parameters and the resulting
one step-ahead forecasts attain promising performance. For
example, in the top right panel of figure 2, the subject’s initial
response to carcinogenesis is better than the baseline one of
the corresponding training data set (in the sense that the tumor
growth rate is smaller than the expected one). Thus at 𝑡 = 1
the prediction overestimates the observed value 𝑌1. As soon as
the new information enters our model, the model parameters
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Fig. 3. Kernel density estimator for forecast error 𝑒𝑡 with plug-in
bandwidth; From left to right: Randomly selected mouse - see figure
2- from test set corresponding to the 𝐻𝑇1080, 𝐸0771, 4𝑇1 and 𝑈87
cancer cell line.

are updated towards the unique characteristics of the given
subject.

The uncertainty about our predictions is explained by the
HPD intervals. At 𝑡 = 0, when no information about the
individual apart from the initial tumor volume is available,
we predict that the subject’s response to carcinogenesis will
be similar to the baseline behavior. However, we are still
uncertain on our prediction, thus the HPD interval is large. The
HPD interval decreases with time, because, as time evolves,
our confidence on the one step-ahead predictions increases due
to the new information that comes in.

Figure 3 demonstrates the kernel density estimator of the
forecast error for each of the cases shown in figure 2. The
smoothing parameter (bandwidth) is chosen by the plug-in
approach of [16] with an adjustment parameter, due to the
small sample size, equal to 3/2. There is no evidence either
against zero mean or symmetry (skewness) of the distribution
of the forecast errors.

IV. CONCLUDING REMARKS

We have proposed a dynamic linear model for tumor growth
and a personalized Bayesian forecasting method to predict
tumor evolution, given at most a few observed data accom-
panied by an a priori information about the average response,
of the population in which the subject belongs, to a specific
type of cancer which is under examination. From our in vivo
experiments we conclude that the one-step ahead prediction
performance of the suggested model is promising.

The HPD intervals quantify the aggregate effect of the het-
erogeneous sources of variation on the prediction uncertainty,
i.e. a simple model is used to describe a complex system,
small sample size, measurement error, estimation of tumor
volume with only two dimensions, between and within subject
variation. The HPD intervals are generally a decreasing func-
tion of time. Nonetheless, in our experiments, as commonly
observed in the literature, due to the small sample size and
the great uncertainty in cancer growth evolution, the HPD
intervals remain relatively large by the end of the experiment to
accommodate the underlying uncertainty on what will happen
in the near future.

The suggested model’s perspective is to incorporate the
proposed methodology in adaptive optimal control using
pharmacokinetic-pharmacodynamic, drug efficacy and toxicity
modeling taking into account resistance.
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