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Abstract—Gender differences in mathematical thinking is a
common concern of scientists from different research fields. Both
parents and teachers report that males seem to perform better
in complex mathematics compared to females. This study comes
to shed light in the different organization of the underlying
functional networks, in order to investigate the aforementioned
observation, without supporting or rejecting this statement. In
this sense, it is generally accepted that females use their both
hemispheres to accomplish a certain task, while males use mostly
the hemisphere which is properly suited. For the purposes of
the current analysis, electroencephalographic recordings were
collected from 11 males and 11 females, during a difficult
mathematical task. Then a previously proposed model was
used in order to pass from the sensor level to the cortical one,
in order to examine the networks formed among the cortical
dipoles. Mutual information was employed to form the graphs
represeting the functional connectivity among the different
dipoles, while the density, the global and the local efficiencies
were further examined. The results suggest that females use
their both hemisphere to solve the complex mathematical task
while males use mostly their left hemisphere which is the
responsible one for the mathematical thinking.

Index Terms—Graph Theory, Mathematics, Mathematical
Cognition, Mutual Information, Inverse Problem

I. INTRODUCTION

Gender differences in mathematical abilities, still concern
the scientists who are trying to investigate the females under-
representation at difficult mathematics [1], [2], while stereo-
types that males seem to perform better in mathematics are
well held by both parents and teachers [3], [4], [5].

Reviewing this difference from a neuroscientific point of
view, we observe that males have larger cerebra compared to
females of the same age and health status [6]. Although most
brain structures are larger in males than females brain, this
difference is most prominent in the frontal and the occipital
lobes, bilaterally [7]. Also male differentiated brains have a
thicker right hemisphere [6]. Given the localization of spatial
and mathematical abilities in the right hemisphere [6], this
finding may explain, at least to an extend, the pronounced
orientation of brain males to spatial and mathematical func-
tionality [6].

Corpus Callosum seems to play a crucial role in the math-
ematical differentiation between genders. Corpus callosum is
a large tract of neural fibers facilitating the inter-hemispheric
communication. The larger corpus callosum allows more in-
formation to flow between the left and the right hemisphere.
Females have larger corpus callosum in contrast to males [8],
[9], [10] depicting the fact that when women use their both
hemispheres, they tend to create more synapses between them.

Males exhibit significantly increased rightward asymmetry
in terms of the corpus callosum thickness, resulting in a more
widespread functional organization of callosal projections in
the right hemisphere [6]. These findings support the origin
of the dimorphic organization of the human brain at the
early sexual differentiation. Moreover, it is evident that the
gender effects on the brain organization are projected on
its functionality and can be studied in the level of inter-
hemispheric exchange of information.

Brain functional connectivity is a tool to study arbitrary intra
and inter-hemispheric functional relationships, however, with
no reference to anatomical connections or an underlying causal
model [11]. Many connectivity metrics have been proposed
so far [12] in order to quantify the amount of functional
information exchanged and its direction as well [13]. Mu-
tual information is preferred as it describes the dependence
between the joint distribution of two variables and what
the joint distribution would be if these two variables were
independent. Following the formation of the brain functional
networks, Graph Theory is then employed to reveal their global
and local characteristics, such as the density, the global and
the local efficiencies, etc. Statistical comparisons on these
graph parameters between different brain states have shown
significant properties of the brain function, where classic older
methods have poorly managed, or even failed, to detect.

There is limited evidence on mathematical thinking in-
vestigated in the framework of brain functional connectivity.
Multiplication tasks were associated with a widespread pat-
tern of distant signal synchronizations, indicating increased
demands for neural networks cooperation during performance
of highly demanding cognitive tasks [14]. We hypothesize that
the gender lateralization effect, present during mathematical
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thinking, will be detected by the parameters of the brain
functional networks treated as graphs. More specific, our
assumption lies with Carter’s opinion [15], which supports
that there is a tendency for women to bring both sides of
their brain to bear on complex mental tasks, while men use
mostly the side which is better suited. So for males, we are
expecting to see denser graphs in the left hemisphere which is
the dominant one for the mathematical interpretation, while
the functional networks produced by the female brains to
mathematical stimuli are expected to be spreaded in both
hemispheres equally.

II. MATERIALS AND METHODS

A. Participants

Twenty two right handed medical students of the University
of Crete were used for the purposes of this study. Half of
them (11) are males and the rest half (11) are females. All
participants had normal or corrected to normal vision and they
were refrained from any alcohol or caffeine consumption the
day before the experiment. They were also asked to sleep as
adequately and comfortably as possibly achievable the night
before the recordings. They also signed an informed consent
form, while the experimental protocol was approved by the
ethics committee of the medical department.

B. Experimental Design

The EEG recordings were performed in dark electrical and
sound attenuated room. They were lying in a comfortable chair
and the stimuli were given with a laptop about 80 cm in front
of the individual. The EEG signals were recorded with 31
electrodes placed on the scalp according to 10/10 International
System (FP2, F4, FC4, C4, CP4, P4, O2, F8, FT8, Fz, FCz,
Cc, CPz, Pz, Oz, FP1, F3, FC3, C3, CP3, C3, F3, FC3, C3,
CP3, P3, O1, F7, FT7, PO7, AND A1+ A2 as reference).
From these 31 electrodes, one was used as the trigger, one for
the detection of eye-movements and one for the grounding,
resulting to 28 EEG recordings. The signals were amplified
and then digitized at 500 Hz and online filtered (1-200 Hz).

In order to examine the cerebral responses to mathemat-
ical stimuli, two different tasks were used during the EEG
recordings. The first one, which was served as the control
one, appears a white cross to a black screen for thirty seconds
(CTRL), while the second task included eight trials of two-
digit multiplications (MULT) (e.g.31x24). All the trials were
the same for all the participants and they were followed by
a time frame in order to give the subjects the opportunity to
calculate the given multiplication. It has to been noticed that
most of the estimations were correct and the herein analysis
was based only on them. Each segment’s duration was at least
19 seconds but the herein analyzed segments were 10 sec
without any visible artifacts, as they were observed by three
independent observers .

C. Cortical Activity

EEG records the activity of the cortical dipoles oriented in
tangential or radial directions according to the scalp surface.

However the variation of the electrical conductivity among the
different head compartments leads to the volume conduction
problem, which is very serious for the functional connectivity
study [16]. To face this problem, the cortical activity was es-
timated from the 28 EEG signals, by adopting a realistic head
model, which describes the different electrical conductivities
of the head structures and the sensors’ geometry, a cortical
dipole model, which predefines the localization of the dipole
sources, and the inverse solutions [17] [18]. In the current
study an average head model from the reconstruction of 152
normal MRI scans (MNI template http://www.loni.ucla.edu/
ICBM/) has been used, while the four different compartments
of the head model (scalp, outer and inner skull, cortex)
were extracted using the Boundary Element Method (BEM).
BEM is implemented in the Brainstorm toolbox which is
freely available in http://www.neuroimage.usc.edu/brainstorm.
BEM computes the aforementioned compartments by closed
triangle meshes with limited number of nodes (in our case
we have used 258 nodes). Regarding the regularized solution
of the linear inverse problem, we have used the column-norm
normalization, resulting to a transition kernel from our 28 scalp
signals to 258 cortical signals.

D. Functional Connectivity

The functional connectivity of the cortical sources was
computed using the Mutual Information (I) index [12] given
by the next formula:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)

where p(x, y) is the joint probability distribution function of
X and Y , and p(x) and p(y) are the marginal probability
distribution functions of X and Y respectively. Using I we
have computed 22 (2 Tasks x 11 Subjects) adjejency matrices
(AM) for males and 22 for females.

E. Graph Analysis

Graph is a mathematical representation of a set of objects
where some of them are connected by links. These intercon-
nected objects are called vertices or nodes while the links
that connect some pairs of vertices are called edges. In our
study, the vertices are the cortical dipoles whereas the edges
are defined by the I value of each pair.

In order to pass from the AMs to binary and undirected
graphs, having a representation of the population’s behaviour,
we have employed a method proposed by [19]. According
to this methodology, for every (i, j) element of the AMs we
form two variables containing 11 values each, and then non-
parametric statistical tests, by means of Mann-Whithney U-
Test, defines if an element has statistically significant differ-
ence among the CTRL and the MULT tasks (Fig.1). If it’s
true then a link connecting the ith and the jth nodes will
be formed, otherwise these nodes will be unconnected. So
we have performed 66564 (258x258) U-tests for males and
females separately, corrected using the False Discovery Rate
[20]. So, with this way one characteristic networks (CN) for
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Fig. 1. Graph Generation. For the (i, j) element of the AMs we form
two variables containing 11 values each (blue squares), and then the non-
parametric U-Test defines if the CTRL and the MULT tasks seem to have
statistically significant differences in the certain element. If it’s true then a
link connecting the ith and the jth nodes will be formed (1 in the graph
matrix), otherwise these nodes will be unconnected (0 in the graph matrix)

Fig. 2. Cortex Model. In the top figure we can see the cortex model, in
a 3D format, alongside with the triangular mesh which defines the nodes’
and the edges’ position. In the left bottom subfigure we have a top view of
the same model, while the right one depicts clearly the geometry of the two
different networks taken in this study, which corresponds to the left and the
right hemisphere respectively.

males and one for females were formed. For the lateralization
purposes, we have divided each one of the CNs into two
separate networks, which correspond to the two different
hemispheres of the cerebral cortex (Fig.2), where the network
parameters were further examined.

For the purposes of the current study, three network param-
eters were employed and they are fully described next.

1) Density: The density (K) of a graph is the ratio of the
number of edges across the number of possible edges. The
following formula was used for the densitys computation

K =
2E

V (V − 1)

where E is the number of edges and V is the number of
possible edges. The maximum number of edges is 1

2V (V −1)
, so the maximal density is 1 and the minimal density is 0
[21].

2) Global Efficiency: Latora and Marchiori [22] defined the
efficiency of the path between two vertices as the inverse of
their shortest distance. In case where there is not any path
to connect two vertices, their distance is infinite so their
efficiency is 0. So global efficiency (GE) is given by the
following typo:

GE =
1

n

∑
i∈N

∑
j∈N,j6=i

1
dij

n− 1

where dij = 1 if the ith and the jth nodes are connected,
otherwise dij = 0.

3) Local Efficiency: Local efficiency (LE) (Ei) of a graph
is the average of the global efficiencies of each subgraph. The
subgraphs are formed by removing the ith node, and taking the
rest nodes which were connected to the removed one. Local
efficiency reflects the tendency of a graph to form clusters. In
this sense, it is understandable that a fully connected graph
has local efficiency equal to 1, while the local efficiency of an
empty graph is 0 [12].

III. RESULTS AND DISCUSSION

Results suggest that females use their both hemispheres
equally to complete two-digit multiplications while the males
make use of their left hemisphere mostly (Fig. 3). Taking into
account the figures 3 and 4, it seems also that females produce
denser graphs compared to males, as a cerebral response to
a complex mathematical task. According to these results our
main hypothesis seems to be correct, because graph analysis
seems also to support Carter’s [15] statement, which mentions
that there is a tendency for women to bring both sides of their
brain to bear on complex mental tasks, while men use mostly
the side which is better suited. This can be further explained
by the fact that females have thicker corpus callosum which
is the major connection path between the two hemispheres. In
this sense, the left hemisphere seems to be dominant in males
when they are involved in complex arithmetics, because the
left hemisphere, and especially the left fronto-temporal (Fig.3)
region is used for logic, math and analytical reasoning.

Regarding the GE we observe that both males and females
seem to have more efficient graphs in the left hemisphere
compared to the right one. However the difference between
the GE among the two hemispheres is lower in females
rather than in males. This gives us a further evidence to
support that females use their both hemispheres to bear on
two-digit multiplications, that’s why both hemispheres’ CNs
have similar efficiency. Samely, we can conclude for males that
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Fig. 3. Gender Differences among the Left and the Right Hemispheres. In
this figure it is clearly observable that females are engaging both hemispheres
in order to accomplish a mathematical task while males are mostly based to
their left hemisphere. In the first four plots, the graphs are depicted in the
form of their AMs, while in the last four images the CNs are depicted inside
the cerebral cortex.

their right hemisphere’s global efficiency is too low, compared
to the left’s one, because they are not based on their right
hemisphere to solve difficult arithmetics.

Higher values of local efficiency suggest a larger level of
internal organization and fault tolerance. So it seems that for
both males and females right hemisphere is more faults tol-
erant in contrast to the left one, because the right hemisphere
is not the dominant hemisphere for the complex arithmetics.
We also observe that males seem to have greater difference of
their local efficiency among the two hemispheres compared to
females, which is explained by the fact that males use more
their left hemisphere, so the right one is much more faults
tolerant, while the females use both hemispheres, so the right
hemisphere is less faults tolerant compared to the right one.

IV. CONCLUSION

This study shed more light, in the differences between
males and females during difficult mental arithmetics, using

Fig. 4. Graph Parameters.

the graph theory. All of the aforementioned results suggest
that females use their both hemisphere to solve two-digit
multiplications while males use mostly their left hemisphere
which is the responsible one for the mathematical thinking.
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