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Abstract—Video loops of B-mode ultrasound images of 35 
carotid bifurcation plaques were obtained (4 symptomatic and 31 
asymptomatic) from patients with carotid bifurcation 
atherosclerosis. Video loops were classified visually as showing 
concordant (n=22) or discordant motion (n=13). Concordant 
plaques were characterized by uniform orientation of motion 
throughout the cardiac cycle. Discordant plaques exhibited 
significant spread in motion orientation at different parts of the 
cardiac cycle, especially at systole. 

We developed a real-time motion analysis system that applies 
Farneback’s method to estimate velocities between consecutive 
video frames. For our purposes, we allow a 100msec time interval 
between the video frames used in the analysis. This approach 
allows us to analyze significant motions associated with a larger 
time interval. Over each video frame, we measure the spread of 
the motion orientation around the dominant orientation. For 
each video, we look at the spreads of the motion orientations for 
different motion magnitudes. Using these motion-spread 
measurements, we can quantify discordant movement.  

The sum of maximum fan widths for the median pixel motions 
5 to 3 (SMFW5to3) had a median value of 100 degrees and inter-
quartile range (IQR) of (80, 110) degrees for the concordant 
plaques and 270, (230, 430) for the discordant plaques (P < 
0.001). Thus, we have a new tool to differentiate between 
concordant and discordant plaques. 

 
Index Terms—Atherosclerosis, Carotid Bifurcation, 

Ultrasound, Plaque Motion Analysis. 

 I. INTRODUCTION 
Cardio vascular disease (CVD) is the leading cause of death 

in the United States. In 2008, CVD was the primary cause of 1 
of every 3 deaths or 811,940 of all 2,471,984 deaths in the 
United States [1]. The prevalence of CVD among American 
adults is 82,600,000 or greater than 1 in 3. The total direct 

medical costs of CVD will be tripled from $273 billion to $818 
billion between 2010 and 2030. The rate of death by CVD has 
declined to 30.6% from 1998 to 2008. About 47% of the 
decrease in death is attributed to increased use of evidence-
based medical therapies and 44% to life style and 
environmental changes. There was a 22% increase in the total 
number of inpatient cardiovascular operations and procedures, 
from 6,133,000 to 7,453,000 between 1999 and 2009. In 2008, 
there were 795,000 cases of new or recurrent stroke and 
accounted for 1 of every 18 deaths in United States. Among the 
survivors of ischemic stroke who were older than 65 years, 
many experience long-term disabilities [1]. 

The majority of ischemic cardiovascular events are due to 
atherosclerotic plaques (APs). Thus, B-mode ultrasound of the 
carotid artery and computed tomography of the coronary artery 
are used for detecting the presence of atherosclerotic plaques 
[1]. For symptomatic patients who present transient monocular 
blindness, transient ischemic attacks or stroke and have a 
greater than 70% stenosis, carotid endarterectomy (CEA) is the 
method of choice because it reduces the 5 year stroke rate from 
11% to 5% (ECST [2], NASCET [3]). For asymptomatic cases, 
the decision to remove the plaque depends on the identification 
of high risk plaques. This is because in patients greater than 
70% stenosis CEA reduces the 5 year stroke rate from 2% to 
1% as reported in the Asymptomatic Carotid Atherosclerosis 
Study (ACAS) [4] and ACST [5]. A number of texture features 
such as a low gray scale median indicating a hypoechoic 
plaque or the presence of a large juxtaluminal black area 
without a visible echogenic cap have been shown to be able to 
identify a high risk subgroup [6]-[8]. However, at best, only 
70% of the strokes occurred in this high risk group during 
follow-up. The remaining strokes occurred in the low risk 
group.  
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It has been suggested that plaques may rupture not only as a 
result of inherent instability, but also due to excessive 
mechanical forces during the cardiac cycle. Meairs and 
Hennericci [9] proposed plaque surface motion analysis to 
distinguish between high and low risk plaques. The approach 
was based on reconstructions of plaque motions using temporal 
3-D (4-D) ultrasound. The authors [9] found significant 
differences in the maximal discrepant surface velocity (MDSV) 
motion between symptomatic and asymptomatic plaques. 
Murillo et al. in [10] used a multi-scale AM-FM approach to 
estimate 2-D plaque motion to help differentiate between 
symptomatic and asymptomatic cases. More recently, Golemati 
et al. in [11] reported on the differences between average 
motion measurements extracted from: (i) normal versus 
elderly, and (ii) symptomatic versus asymptomatic cases. 

In this paper, we introduce a new image analysis 
methodology for quantifying discordant plaque motion, which 
is the phenomenon of different parts of the plaque moving in 
different directions with different velocities during the cardiac 
cycle. In contrast, concordant plaque motion is the 
phenomenon of all parts of the plaque moving in the same 
direction and the same velocity during the cardiac cycle. 
Clearly, discordant motion is associated with higher strain, as 
opposed to concordant motion that is associated with lower 
values for strain. Our aim is to classify and quantify the 
motions that can help clinicians differentiate between plaques 
that are likely to rupture because of high internal strains from 
plaques with low strains.  

The rest of the paper is organized as follows. We describe 
the methodology in section II. We provide the results in section 
III and provide concluding remarks in section IV. 

II. METHODOLOGY 
A primary goal of the proposed research is to develop an 

interactive, real-time system that facilitates plaque ultrasound 
video experimentation. The entire system was implemented 
using OpenCV libraries [12]. We provide a system diagram 
with the major components of the system in Fig. 1. 

First, each ultrasound video is loaded using an interactive 
GUI (shown in Fig. 2). The user is then asked to provide a 
manual segmentation of the initial plaque region. Alternatively, 
the user can load a pre-computed segmentation of the plaque 
(see Fig. 2). The user is also asked to provide parameters 
associated with the motion estimation method and the motion-
spread scatterplot analysis. In the following subsections, we 
provide detailed descriptions of each processing block. 

A. Ultrasound video acquisition and visual classification 
Video loops of B-mode ultrasound images of 35 carotid 

bifurcation plaques were obtained (4 symptomatic and 31 
asymptomatic) from patients with carotid bifurcation 
atherosclerosis. Institutional Ethics Committee approval has 
been obtained. The video loops have been anonymised and 
studied blind; i.e. without knowledge of presence or absence of 
symptoms. The ultrasound videos were of size 568x448 pixels 
at a frame rate of 40 frames per second (fps). 13 plaques were 
visually classified as showing discordant movement and 22 as 
showing concordant movement. 

From each video loop, we extracted a series of 8-10 
consecutive cardiac cycles that did not include any motion 

artifacts such as carotid movement due to swallowing or neck 
movement. Video loops were classified visually as 
mechanically concordant or discordant. Here, a plaque was 
classified as concordant if it had all of its components 
simultaneously move in the same direction throughout the 
cardiac cycle. On the other hand, a plaque was classified as 
discordant if it had components move in different directions, at 
certain parts of the cardiac cycle, especially in peak systole. 

B. Video motion estimation and relevant parameter selection 
Motion estimation is based on Farneback’s method [13]. 

Visually, we have confirmed that this method performs slightly 
better than Horn and Schunck’s method as described in [14]. 
Over each pixel, the approach fits two local polynomials 
between two reference video frames. Thus, motion is computed 
between any two video frames, as opposed to traditional Horn 
and Schunck’s approaches that use averages over several 
frames [14]. In our motion estimation protocol, as opposed to 
computing motion between consecutive video frames, we 
compute the overall motion over a user-specified time interval. 
This is specified as the ݈ܶܽݒݎ݁ݐ݊ܫ ݊ݏ݅ݎܽ݉ܥ ݏ݁݉ܽݎܨ ݓ 
parameter in the GUI (see Fig. 2). Here, the interval between 
different sequential frames compared was set to 0.1 seconds 
(e.g., ݈ܽݒݎ݁ݐ݊ܫ ݊ݏ݅ݎܽ݉ܥ ൌ 4 frames in a cine loop of 40 
fps). 

In what follows, we provide more details on the approach. 
Over each point ݔ ൌ ሺݔଵ,  ଶሻ of the video frame, we fit aݔ
quadratic polynomial. For the first frame, we have ଵ݂ሺݔሻ ൌ ݔଵܣ்ݔ  ܾଵ் ݔ  ܿଵ,                            (1) 
where ܣଵ is a 2x2 real-symmetric matrix, ܾଵ is a 2x1 column 
vector and ܿଵ is a constant. For computing the parameters in 
(1), we have a weighted least-squares approach with weights 
set by a Gaussian of size ܰ ൌ ݁ݖ݅ܵ ݓܹ݀݊݅ ݊݅ݏ݊ܽݔܧ ൌ5 7 ݎ and with standard deviation ߪ ൌ ܽ݉݃݅ܵ ݓܹ݀݊݅ ݊݅ݏ݊ܽݔܧ ൌ  For the .1.5 ݎ 1.2
translation model considered here, at the same pixel in frame 2, 
we have ଶ݂ሺݔሻ ൌ ଵ݂ሺݔ െ ݀ሻ ൌ ሺݔ െ ݀ሻ்ܣଵሺݔ െ ݀ሻ  ܾଵ் ሺݔ െ ݀ሻ  ܿଵ   ൌ ݔଵܣ்ݔ  ሺܾଵ െ ݔଵ݀ሻ்ܣ2  ଵ݀ܣ்݀ െ ܾଵ் ݀  ܿଵൌ ݔଶܣ்ݔ  ܾଶ் ݔ  ܿଶ                                                  (2) 

The relations between polynomial coefficients of the 2nd 
frame and the 1st frame are given by: ܣଶ ൌ ଵ,                                              (3) ܾଶܣ ൌ ܾଵ െ ଵ݀,                                (4) ܿଶܣ2 ൌ ଵ݀ܣ்݀ െ ܾଵ் ݀  ܿଵ.                   (5) 

These coefficients are local functions of each point in the 
image as given by: ܣଵሺݔሻ, ܾଵሺݔሻ, ܿଵሺݔሻ, ܣଶሺݔሻ, ܾଶሺݔሻ, and ܿଶሺݔሻ. Ideally ܣଶሺݔሻ ൌ  ሻ as in equation (3) but, here aݔଵሺܣ
common ܣሺݔሻ is approximated using ܣሺݔሻ ൌ ሺܣଵሺݔሻ   ሻሻ/2.                                   (6)ݔଶሺܣ

An approximate solution for the displacement ݀ is derived 
from equation (4) without the need to consider (5). After 
substituting (6) into (4), we have ܣሺݔሻ݀ሺݔሻ ൌ െ ଵଶ ൫ܾଶሺݔሻ െ ܾଵሺݔሻ൯.                          (7) 

The constraint of equation (7) can be solved for ݀ሺݔሻ point-
wise if ܣሺݔሻ is non-singular but the result can be very noisy. 
Then, assuming slowly-varying displacements, a Gaussian 
filter of size ݁ݖ݅ܵ ݓܹ݀݊݅ ݄݃݊݅ݐ݉ܵ ݊݅ݐܯ ൌ ܰ ൌ
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15, ߪ ൌ 0.15 · ሺܰ െ 1ሻ is applied to reduce the noise in the 
estimates.  

To capture large displacements, constraint (7) is solved 
using a coarse to fine approach. At a coarse scale, we get initial 
estimates of the displacements which are propagated and 
refined at the finer scales. The number of scales is set by ܲݏ݈݁ݒ݁ܮ ݀݅݉ܽݎݕ ൌ 3, with downsampling by 2 as we go from 
scale to scale (݈ܲ݁ܽܿݏ ݀݅݉ܽݎݕ ൌ 0.5ሻ. At the finest scale, 
estimation is performed at every video pixel. In each scale, the 
search for a better matching polynomial is done in 3 iterations 
(Fig. 2, see [13]). 

C. Plaque motion visualization 
Statistical analysis of the estimated motion vectors is 

performed over the region of the plaque. A limitation of the 
current version of the software comes from the fact that we are 
not tracking the motion of the plaque boundary throughout the 
cardiac cycle. 

To visualize the motion, the user can select the spacing 
between the estimated motion vectors 
 and can also magnify the display (݃݊݅ܿܽܵ ݏݎݐܸܿ݁ ݊݅ݐܯ)
of the motion vectors (݊݅ݐ݂ܽܿ݅݅݊݃ܽܯ ݏݎݐܸܿ݁ ݊݅ݐܯ). For 
larger plaques, we often use a spacing of 10 pixels. For smaller 
plaques, we use a spacing of 5 pixels. Furthermore, each 
motion vector is magnified by a factor of 5. We demonstrate 
our motion visualization in Fig. 3. In Figs 3(c) and 3(d) we 
show the directional motion distribution (circular histogram 
plots).  

D. Statistical Analysis 
The discrimination between concordant and discordant 

motions is based on estimating the motion velocity spread over 
each video frame, over the entire video. To determine the 
motion spread, we first find the dominant orientation at each 
video frame. Here, the dominant orientation is estimated using 
the peak of the orientation histogram (see Fig. 3(c) and 3(d)). 
At the dominant orientation, the median velocity magnitude is 
taken as the ݉݁݀݅ܽ݊_݁ݑ݈ܽݒ (y-axis value) for the scatter-plots 
(see Fig. 3(e), (f)). For the motion spread, we use the 
orientation-histogram to determine the angular spread that 
reaches 50% of the peak orientation (half-peak spread). For 
each video frame, we have an estimate of the angular spread ሺ݄ݐ݀݅ݓ) and the ݉݁݀݅ܽ݊_݁ݑ݈ܽݒ summarized as a single point: ሺ݄ݐ݀݅ݓ,  ሻ. A collection of all of the points over݁ݑ݈ܽݒ_݊ܽ݅݀݁݉
the entire video is used to generate a scatterplot (see Fig. 3(e) 
and 3(f)). 
 We next determine the maximum fan-width for each 
median value. This is defined using: ܹܨܺܣܯሺ݈݉ܽݒሻ ൌ maxௗ_௩௨ୀ௩  (8)   .݄ݐ݀݅ݓ
The maximum fan-width measures the maximum angular 
spread (in degrees) for a fixed motion magnitude. Here, we bin 
the motion magnitudes for integer-valued motions ݉3 ,2 = ݈ܽݒ, 
4, and 5 pixels. The sum of the maxima over several integer 
motions are defined using ܹܵܨܺܣܯሺ݈݉ܽݒ ൌ ݅, … , ݆ሻ ൌ ∑ ሻ௩ୀ௩ୀ݈ܽݒሺܹ݉ܨܺܣܯ .  (9) 
To differentiate between concordant and non-concordant 
motions, we examine the sum of the motion spreads as 
expressed by (9). Here, the basic idea is that non-concordant 
motions will be characterized by larger spreads. 

III. RESULTS 
To differentiate between concordant and disconcordant 

motions, we collected ultrasound videos from 35 patients as 
described in section II.A. These videos were visually classified 
into concordant plaques (n=22) and discordant (n=13) plaques. 

Figure 3 provides a comparative example between a stable 
and an unstable case. The orientation histogram of the visually 
classified as concordant plaque of Fig. 3(c) shows a narrow fan 
(or wedge) width of 6 degrees at the peak systole of the cardiac 
cycle. Fig. 3(d) shows the orientation histogram for the visually 
classified as discordant plaque of Fig. 3(b). In this case, the 
orientation spread is 84 degrees at the peak systole of the 
cardiac cycle. The orientation histogram also exhibits 2 distinct 
peaks suggesting a bi-modal distribution. 

We compared the scatterplots for all cases. In Fig. 4, we 
show the MAXFW and SMAXFW for the different cases 
described in (8) and (9). From the boxplots, we can see that 
SMAXFW(i=3,4,5) provides the best separation between stable 
and unstable plaques. The sum of maximum fan widths for the 
median pixel motions 5 to 3 (SMFW5to3) had a median value 
of 100 degrees and inter-quartile range (IQR) of (80, 110) 
degrees for the concordant plaques and 270, (230, 430) for the 
discordant plaques (P < 0.001). Thus, we have a new tool to 
differentiate between concordant and discordant plaques. 

IV. CONCLUSION 
Video loops of B-mode ultrasound images of 35 carotid 

bifurcation plaques were obtained (4 symptomatic and 31 
asymptomatic) from patients with carotid bifurcation 
atherosclerosis. Video loops were classified visually as 
showing concordant (n=22) or discordant motion (n=13). 
Concordant plaques were characterized by uniform orientation 
of motion throughout the cardiac cycle. Discordant plaques 
exhibited significant spread in motion orientation at different 
parts of the cardiac cycle, especially at systole. 

We developed a real-time motion analysis system that 
applies Farneback’s method to estimate velocities between 
consecutive video frames. For our purposes, we allow a 
100msec time interval between the video frames used in the 
analysis. This approach allows us to analyze significant 
motions associated with a larger time interval. Over each video 
frame, we measure the spread of the motion orientation around 
the dominant orientation. For each video, we look at the 
spreads of the motion orientations for different motion 
magnitudes. Using these motion-spread measurements, we can 
quantify discordant movement. We are currently testing our 
approach on larger datasets. 
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Figure 1. System diagram demonstrating plaque motion analysis software. 
 

Figure 2. GUI interface for plaque motion analysis. 
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(a)                                                                                (b) 

 
(c)                                                                                (d) 

  
(e)                                                                                (f) 

Figure 3. Carotid bifurcation plaque motion analysis. (a) Plaque with concordant motion at peak systole. (b) Plaque with discordant motion at peak systole. (c) 
Directional motion analysis for concordant plaque demonstrated in (a) for a frame interval of 0.1 seconds. The histogram plot shows the magnitude and 
orientation. (d) Same as in (c) for the discordant plaque demonstrated in (b). (e) Motion-spread scatterplot for concordant plaque of (a). There is an obvious 
uniform motion characteristic from a maximum displacement of 7 pixels down to 2. (f) Motion-spread scatterplot for the discordant plaque of (b). There is a 
characteristic wide fan-width for peak motion of 6 pixels down to 2.   
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           (a)                                                                                                           (b) 

 
           (c)                                                                                                           (d) 

 
          (e)                                                                                                           (f) 

Figure 4. Boxplots of the maximum fan-width (MAXFW in (8)) and the sum of the maximum fan widths (SMAXFW in (9)) for different, integer pixel motions. 
Here, “0” refers to stable plaques and “1” refers to “unstable” plaques. (a) Boxplot for MAXFW(5). (b) Boxplot for MAXFW(4). (c) Boxplot for MAXFW(3). (d) 

Boxplot for MAXFW(2). (e) Boxplot for SMAXFW(i=2,3,4,5). (f) Boxplot for SMAXFW(i=3,4,5). 
Boxplot Legend. Q1/Q3: 1st/3rd quartile or 25th/75th percentile shown as the lower/upper hinge of the box. M: median shown as a line segment across the box. 

IQR: interquartile range is the box height from Q1 to Q3. Lower/Upper Whisker: The smallest/largest observed value within 1.5×IQR below/above the Q1/Q3. 
S-Outlier: Suspected outliers shown by unfilled circles are between 1.5×IQR to 3×IQR below/above Q1/Q3. Outlier: Outliers shown by 5-pointed stars are 3×IQR 

or more below/above the Q1/Q3. The outliers are labelled by the identifying numbers. 
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