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Abstract—Mathematical modeling is a vital tool for studying 
biological systems. Due to the system complexity and technical 
challenges in molecular level measurement, it is commonly the 
case that a large number of model parameters have uncertain 
values. Analyzing model dynamics from a single estimated 
parameter set is insufficient and liable for misleading results. 
Global sensitivity analysis (GSA) has been recommended as a 
must-have step in the process of developing reliable models. 
However, the technique comes at high computation costs as it 
is based on Monte Carlo simulation which requires a large 
number of model evaluations and manipulating on massive 
data for sensitivity estimation. In this work, we develop a 
software package for global sensitivity estimation of biological 
models.  The software is deployed on KISTI high performance 
computing (HPC) cluster environment to provide web-service 
to system biology modelers. 

Keywords-component; system biology; mathematical 
modeling; sensitivity analysis; parallel computing 

I.  INTRODUCTION 
Systems biology is an interdisciplinary research field that 

focuses on understanding how various biological 
components interact to give rise to biological phenomenal 
[1]. In order to comprehend biological system working 
mechanism, mathematical modeling is a vital tool. Not only 
providing the systematically understandings, mathematical 
models can help perform experiments which have been 
conventionally time consuming, expensive or even 
infeasible. Consequently, new hypothesis can be formulated 
through such in silico experiments.  

Due to the nature of biological complexity, usually we 
have knowledge of the qualitative ‘structure’ of a model but 
little knowledge of model parameters is available. Parameter 
estimation is still a major challenge and remains the 
bottleneck in biological modeling as the number of 
parameters is usually large while the available experiment 
data is limited. In general, it is possible to fit a model to any 
experimental data, i.e. to find a set of parameter values 
whose model simulation outcome can resembles such data as 
expected. Models with globally estimated parameters 
although can provide biologically plausible predictions, they 
are usually vulnerable to instrumental or unethical use. 
Therefore, it has been recommended that model calibration 
and analysis must be performed in a rigorous systematic 
framework where uncertainty in model input must be taken 
into account by applying sensitivity analysis. 

Sensitivity analysis (SA) is the assessment of how a 
model output is dependent of its parameter variation. Not 
until recently, it is often defined as the local measure of the 
effect of a given input on a given output, i.e. system 
derivatives such as

i
Y

XiS ∂
∂=  , where Y is the output of 

interest and Xi is an input factor. This local approach has the 
attraction of being very efficient in computation time, yet it 
is only informative at the nominal point where the model is 
fitted. In the presence of uncertainty inputs which is often the 
case of biological models, the assessment therefore should 
make use of methods based on exploring the input space, 
considering that results obtained comprehensively from a 
handful of points thrown into the space is much more 
informative and robust than the derivative estimated at a 
single point. This approach, where the variation in model 
input is performed in a global fashion, i.e. all input factors 
are perturbed for whole input space exploration, is called 
global sensitivity analysis (GSA). Although the goals of 
GSA is to measure the influence of variance in the model 
input to the model output, its ultimate usefulness lies on the 
ability to identify parameters, components that capture 
essential characteristics of a model. Such analysis is 
particularly useful for complex biological networks whose 
output behavior is dictated by a large number of input 
parameters. Its application includes, to name a few, model 
reduction, experiment design and model validation [2]. The 
technique has been an essential tool which is applied 
regularly in the process of developing complex biological 
models [3][4][5][6].  

In general, GSA is based on Monte Carlo methodology 
which requires repeated batch jobs of a large number of 
simulations to obtain statistically valid results.  This may not 
be a problem for relatively simple biological models, but as 
the complexity of the system model increases this will 
increase the computational demand. The need for high 
performance computing becomes essential. 

Despite increasing research utilizing GSA techniques, 
there are few current available software tools for sensitivity 
analysis of biological models. Simlab [7] is a general 
sensitivity analysis package that implements most recent 
GSA techniques but it is lacking of a simulation engine for 
biological models. SBML-SAT [8] is developed specifically 
for biological system modeling as it provides interface to 
model simulation as well as SBML language, a de-factor 
standard for model representation in system biology. System 
biology toolbox [9], a package for mathematical modeling of 
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biological systems, also provides the GSA features. However 
those software packages are developed for desktop-based 
systems without the utilization of multi-cores power. They 
are suitable for models with small number of parameters. In 
recent applications of GSA on large models [10], intensive 
model evaluations are distributed on cluster nodes then 
massive simulation results are collected to estimate 
parameter sensitivity. The whole process is manually 
handled and computationally inefficient. In this work, we 
aim to develop a software package that can utilize high 
performance computing systems for the task of parameter 
sensitivity estimation and to deploy the package in our HPC 
system to provide web-service to system biologists. 

Remaining of the article is organized as follows: Section 
2 provides background of mathematical modeling and global 
sensitivity analysis. In section 3, the architecture of the 
software and its parallelization are described.  Computational 
performance evaluation and software deployment is 
explained in section 4. 

II. BACKGROUND 

A. Mathematical models of biological systems 
Computational models use mathematical rules to describe 

underlying dynamics of interactions among system 
components. In this work we target models that use ordinary 
differential equations (ODE) due to their popularity in 
system biology field. Set of ODEs that governs the temporal 
evolution of molecular entities is depicted as follows: 

0

( , )

( 0)

dX f X
dt
X t X

θ=

= =

    (1)  

Here, X is a set of species such as proteins, enzymes; X0 
is their concentrations at initial state; θ is a vector of kinetic 
parameters that represent rates of reactions in the model. 
Given parameter values and initial conditions, the equations 
can be solved with numerical methods to produce time 
course evolution of species.  

B. Global sensitivity analysis 
The term sensitivity analysis has a variety of meanings in 

different disciplines. A general definition by Saltalli [2] 
states that “sensitivity analysis is the study of how the 
variation in the output of a model can be apportioned, 
qualitatively or quantitatively, to difference sources of 
variation, and how the given model depends upon the 
information fed to it”.  To apply this definition to biological 
models, it is necessary to identify model input and output. 

In the scope of system biology, set of parameters P=(θ, 
X0) is considered as input factors which are sources of 
variation. The output is a singular variable which is usually a 
feature from time course data of an under-investigated 
species. In biological signaling pathways, this species is 
usually a downstream transcription factor protein which has 
important roles in controlling cellular processes. Let Xi be the 
interested species then the output is defined by: 

( ( ))iY g X t=    (2) 

where ( )iX t represent the time course evolution of the 
species and g is a feature extraction function. Multiple 
features can be used such as values at specific time points, 
steady state of the signal, signaling duration. For simplicity, 
we consider output is a single variable. By combining (1) 
and (2) the relationship between output and inputs can be 
represented as a function:  

( )Y h P=    (3) 
This function can be evaluated by solving the ODE 

system in (1) then evaluating the right-hand side of (2). 
Towards this end, the model we are interested in is 

represented in (3). The goal of sensitivity analysis is to 
quantify the influence of uncertainty in input factors P to the 
uncertainty in output Y. 

When input factors are relatively certain, partial 
derivative of the output function with respect to the input 
factors can be used as sensitivity measures. They can be 
computed numerically by performing multiple simulations 
varying input factors around a nominal value. This technique 
is called local sensitivity analysis as it measures the local 
impact of input factors on model output. For biological 
networks, input factors of their models will often be 
uncertain, as aforementioned, thus results from local SA 
might be not sufficient. It is necessary to assess model 
dynamics under global perturbation of inputs and GSA must 
be used. 

In following sections, we introduce three main GSA 
methods that have been successfully utilized in system 
biology research field. After brief explanations, we describe 
their general underlying procedure to compute sensitivity 
measures. 

1) Variance based methods 
The main idea of the variance-based methods is to quantify 

the amount of variance that each input factor Pi contributes 
to the total variance of the output ( )V Y . Assuming that the 
factor Pi is fixed at its true value *

ip , the conditional variance 
of output given *

i iP p=  is ( | )iV Y P obtained by taking the 
variance over all factors but Pi. However in most cases, the 
true value *

ip  is unknown, thus the average of this 
conditional variance for all possible *

ip is used, i.e. 

[ ( | )]iE V Y P . Following property of the variance, the total 
output variance can be decomposed as: 

( ) ( [ | ]) [ ( | )]i iV Y V E Y P E V Y P= +   (4) 
The conditional variance ( [ | ])i iV V E Y P= is called the 

“main effect” and is used as an indicator of the importance of 
Pi on the variance of Y. Normalizing the main effect Vi by the 
total variance ( )V Y  we obtain: 

( )
i

i
VS

V Y
=     (5) 

This ratio Si is named first order sensitivity index of factor 
Pi on output Y by Sobol [11]. 

Similarly, the joint effect of the pair (Pi, Pj) on Y is 
conditional variance ( [ | ])i jV E Y P P  and is known as 
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second-order effect. Subtracting the first order effect of each 
factor, the remaining is effect of interaction between the two 
factors: 

( [ | ])

    ( [ | ]) ( [ | ])
ij i j

i j

V V E Y P P
V E Y P V E Y P
= −

−   
 (6) 

The second-order sensitivity index of interaction between 
Pi and Pj on Y is defined as: 

( )
ij

ij

V
S

V Y
=     (7) 

High-order effects can be defined in a similar fashion, for 
example the variance of the third order effect among three 
factors Pi, Pj, Pl would be: 

( [ | ])

       

( )

ijl i j l

ij il jl ijl

ijl
ijl

V V E Y P P P
V V V V

V
S

V Y

= −

− − −

=    

(8) 

The sum of all the order effects that a factor accounts for is 
called the ‘total’ effect. So for an input Pi, the total 
sensitivity index STi is defined as the sum of all indices 
relating to Pi (first and higher orders). For example, in a 
model with 3 input factors (k=3), the total sensitivity index 
for input factor P1 would then be:  

1 1 12 13 123ST S S S S= + + +   (9) 
In general, comparing to the first-order sensitivity index Si 

the total sensitivity index STi is a more accurate measure for 
the effect of a factor on model output variance as it takes into 
account all interaction effects involving that factor. 

In order to estimate the total sensitivity indices, all 
variances must be computed which in fact is to calculate 
integrals of function Y=h(P) over multi-dimensional areas. 
These integrals can be computed by Monte Carlo simulation 
method. However, a ‘brute force’ approach to obtain the 
’total’ effect would needs as many as O(2k) model 
evaluations which is not advisable for models with a 
relatively large number of input factors. Therefore, much of 
research has been to find approximation formulas of the 
variances and their efficient computation methods. In this 
work, we implement three methods to obtain sensitivity 
indices, these are Sobol’s [11], Jansen’s [12] and Saltalli’s 
[13] methods. We refer to [2] for detail information of 
formula derivation and sampling techniques.  

In general, variance-based methods work well with all 
models without any assumptions. However their main 
concern is the number of model evaluations which is usually 
large. The Sobol method would requires N0(2k+1) model 
evaluations, the Jensen’s method needs kN0 while the Saltalli 
method would requires k(N0+1) where k is the number of 
input factors and N0 is a base sampling size. The value N0 
should be large enough for reliably computing one variance 
term, such as V(Y). As a default rule in global sensitivity 
analysis, there is no such a standard sampling size, ones 
should increasing their sampling size and observe the 
sensitivity ranking of input factors. The sample size is 
considered large enough if the ranking order does not change 
for top sensitive factors. 

2) Regional based method 
Although variance based method can provide fine 

detailed information about which factors are important and 
how much they contribute to the variance of the output, they 
are extremely computational expensive. For some cases, the 
variance of output is not major interests but a particular 
portion of the distribution of the output is what we concern. 
For example, we are often interested in Y being above or 
below a given threshold. In this kind of setting, the question 
is which factors are mostly responsible for producing 
realizations of Y in the region of interest? To answer this, we 
tend to divided the realizations of output Y into two groups: 
‘good’ or ‘bad’ and want to rank the input factors in term of 
their influence on this division. These lead to the regional 
based method which in fact demands less number of model 
evaluations.  

In this approach, ones run a Monte Carlo experiment 
producing realizations of the output corresponding to 
different sampled points in the input factor space. Having 
done this, realizations of output Y is then classified into two 
groups: ‘acceptable group’ A, and ‘unacceptable group’ A. 
Realizations in group A is considered well-behaved 
comparing to an expected outcome of the model while the 
ones in group’ A  is considered misbehaving. The 
classification can be as simple as comparing them to a 
threshold value. 

Once the two groups are classified, the sensitivity of each 
input factor Pi on the output Y is determined as following: 
- The classification in the output space is mapped to the 

input space, as shown on Figure 1. For each realization 
in A, its corresponding input sample is classified to 
group (Pi|A). Similarly, for each realization in A, its 
corresponding input sample is classified to group (Pi|ܣ). 
As a result the N input samples are classified into two 
groups: (Pi|A) and (Pi|ܣ) 

- Empirical cumulative distributions F1(Pi) and F2(Pi) are 
estimated for the two sample groups (Pi|A) and (Pi|ܣ) 
respectively. 

- A statistical test is performed to measure if the 
difference of the two distributions is significant or not. 
The Smirnov test can be used and it is defined as the 
greatest vertical distance between the two distributions

( )
( )2 2

, 

            ( )| |
i

i

P i i

smirov Y P

Max F P F P

=

−   (10)
 

(Pi|A) 

(Pi|ܣ) 

A 

 ܣ

Figure 1 Mapping the well-behaved group and 
misbehaving group between input space and output 

space 
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The Smirnov score is considered as the sensitivity measure 
of factor Pi on the output.  
 

3) Screening method 
When dealing with complex models that have a large 

number of uncertain inputs and model evaluation is 
expensive, it is not feasible to use the variance methods and 
even the regional method is still computationally demanding. 
One may want to use only a few number of model 
evaluations to identify set of factors that have little 
contribution to the output uncertainty so that they can be 
neglected in consequent analysis, i.e. we can fix them at any 
given value over their range of uncertainty without reducing 
significantly the output variance. In that case, screening 
method is a well-suited tool. 

General idea of screening method, proposed by Morris 
[14], is averaging local sensitivity measures throughout the 
input space.  Instead of varying multiple input factors at the 
same time, only one factor is changed in small variations to 
measure its so-called “elementary effect” on output variance. 
For a given input factor, elementary effects are measured at 
multiple points in the input space then data analysis on their 
distribution would explain if the input factor is important. 

In Morris’ design, the input factor space is discretized 
and the possible input factor values will be restricted to be 
inside a regular k-dimensional q-level grid, where q is the 
number of “levels” of the design. The elementary effect of a 
given factor Pi at point p=(p1, p2 ..pk) of the grid is defined as 
a finite difference derivative approximation: 

1 2 1

1

( ) [ ( , ,.., , ,
              ,..., ) ( )] /

i i i i

i k i

ee p h p p p p
p p h p

−

+

= + Δ
− Δ   

(11) 

where 
iΔ is a predetermined multiple of 1/q which is the grid 

interval on dimension ith (assuming [0,1]iP ∈ ). For each 
input factor, elementary effects are estimated at several 
random selected points in the input space. Let μ and σ are 
mean and standard deviation of the elementary effects. 
Intuitively, if all elementary effects are zero, then Pi does not 
have any effect on the output Y, also μ and σ are both zero. If 
all elementary effects have the same value, i.e σ is zero, then 
y is a linear function of Pi. In general, a high μ indicates a 
factor with an important overall influence on model output; a 
high σ indicates either a factor interacting with other factors 
or a factor whose effects are non-linear. These two quantities 
are considered as sensitivity measures for the input factors. It 
is worthy to note that they are only qualitative, i.e. the input 
factors are ranked in order of importance but they are not 
quantified on how much a given factor is more importance 
than others. 

To estimate one elementary effect, as shown in equation 
(11), two model evaluations are needed. Assuming r 
elementary effects are required to produce reliable statistics μ 
and σ then the method will need 2rk model evaluations to 
estimate all sensitivity measures for k factors. However, 
Morris came up with a sampling design that can significantly 
reduce that number.  In his design, a path consisting of k+1 
points on the input grid is randomly generated in such a way 
that any two consecutive points are different in only one 

dimension, thus using k+1 model evaluations on that path 
can estimate k elementary effects for k factors. In the end, 
generating such r paths is enough to estimate rk elementary 
effects. The number of model evaluations needed is therefore 
only r(k+1). 

4) General framework for GSA 
Although there are various techniques to estimate global 
sensitivity, they are based on a general framework of Monte 
Carlo simulation which following these steps: 
 

• Step 1: For the defined model ( )Y h P=  with k 
input factors 1 2, ,.. kP P P P= and output Y, ranges 
and distribution are selected for each input factor. 
An expert in the system biological modeling must 
define these ranges and distributions. Usually when 
no prior knowledge is available, uniform 
distribution can be used. 

 
• Step 2: Generates random values for the input 

factors based on their ranges and distribution. 
Output of this step is a matrix P of N k× size where 
the value of N is determined by users and it is 
dependent on model size and GSA technique used. 
Each row of the matrix represents a set of input 
factor values of the model. 

• Step 3: The model is evaluated for each input vector 
to estimate the value of output Y. At the end of this 
step, a column vector Y of size N is estimated. For 
ODE models, model evaluation includes two steps. 
First, the set of ODEs (1) must be solved using 
numerical integration methods. Then value of 
output Y is computed with feature extraction 
function in equation (2). 

• Step 4: The input matrix P is mapped to output 
vector Y using a regression model or a statistical 
model regarding to the used GSA technique.  Based 
on that mapping, the influence of each input factor 
Pi on the output Y is quantified and that value is 
regarded as sensitivity measure. 

 
The difference between GSA techniques lies on step 2 and 
step 4.  

III. SOFTWARE IMPLEMENTATION 

A. Software architecture 
Developing mathematical models is a process of multiple 

steps where various computational tools are utilized such as 
simulation, parameter estimation, sensitivity analysis, 
bifurcation analysis. Our ultimate goal is to develop a 
software platform embracing a collection of such tools, each 
perform a particular task that can be stringed together in 
workflows. Depending on size of investigated models and 
computational complexity of analysis, some tasks can be 
performed on single machines while others need shifting to 
HPC systems providing web-service. The software platform 
therefore should be designed for deploying on both 
environments.  
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The GSA package, being a part of, thus shares several 
components with our under-developing system. Figure 2 
shows the architecture the whole platform where modules in 
shaded blocks belong to GSA package. Basically, it consists 
of several core libraries and applications which are built on 
top of the libraries. The package was developed for 
deploying on Unix systems using C++ programing language. 

 
 The core part of software package is sensitivity analysis 

module which implements three aforementioned GSA 
methods and provides a generic API to applications. The 
module can serve as an independent library for global 
sensitivity estimation of generic models in the form of 
y=h(P). The library does not perform model evaluation but 
exposes a callback function to be implemented by its callers. 
In our system, evaluating a model is to solve a set of ODEs 
in equation (1) then extract features from output time course 
data as explained in section II. The simulation engine module 
is responsible for solving ODE systems. Although alternative 
simulation engines are available in forms of command line 
tools, we opt to develop a new engine as redundant steps 
such as reading SBML files, solver initialization can be 
dismissed when running simulations in batches. 

The engine is built on top of two open source libraries: 
libSBML [15] and CVODES [16]. The libSBML provides 
API to manipulate models in SBML format while CVODES 
is a solver for stiff and non-stiff ordinary differential 
equation systems (initial value problem) given in explicit 
form as shown in equation (1) . Since SBML only implicitly 
imply ODEs, the module needs to convert model into 
explicit ODEs structure which is consequently optimized to 
serve as input for CVODES. It also perform mathematical 
evaluation for the right hand side of the ODEs as request by 
CVODEs as well as handling simulation events supported by 
SBML standard. 

Built on top of core libraries is a collection of command 
line interface tools. There tools serve as back end services 
for either GUI applications on desktop environment or web-
service on HPC systems. Currently a simulation tool and a 
GSA tool are included in our software package.  

B. Parallelization 
The computation cost of global sensitivity analysis lies 

heavily on the two steps: batch evaluating models and 
estimate sensitivity measures.  In our software, these steps 
are parallelized to run on multiple processors. The 
parallelization is accomplished using OpenMPI library. The 
library implements Message Passing Interface (MPI) 
standard and provide a C++ API to allow its applications to 
run in distributed memory multiprocessor architecture.  The 
parallelization with OpenMPI allows the software to work on 
multicores desktop environment as well as HPC systems 
consisting of cluster nodes. 

In the model evaluation step, the parallelization scheme is 
simple because of the “embarrassingly parallel” 
characteristic of the task.  The ‘master’ processor generates 
model input samples, divides them equally then distribute to 
available processors. These “workers” then perform model 
evaluations with received sample by itself.  

The parallelization for the sensitivity estimation step is 
implemented for the variance-based methods and regional-
based method. The implementation is more complicated as 
data communication between processors is needed. For 
variance-based methods, the parallelization is indispensable 
as the amount of data generated may be huge. For the 
regional-based method, the main benefit of parallelization 
comes from a parallel quicksort algorithm that is used during 
the Smirnov test. However, in cases where the number of 
model evaluations is relatively small, for example when the 
investigated model is simple, or in the case of Morris 
method, parallelization is not necessary and sensitivity 
measures are estimated at the master node after gathering all 
simulation result from “workers”.  Our GSA tool can operate 
in both modes: paralleled or unparalleled regarding to the 
complexity of the jobs. 

IV. DEPLOYMENT AND TESTING 
For testing the software package, we conduct 

experiments on a computational model of JAK-STAT 
signaling pathway [17]. The model in SBML format was 
downloaded from BioModels [18], it has 34 species and 72 
kinetic parameters defined in 46 reactions. For global 
sensitivity analysis we varied all 72 kinetic parameters in 
ranges of 0.1 to 10 times of their based values. For the model 
output, we selected the dimerized phosphorylated STAT1n 
protein, a transcription factor that dictates many cellular 
processes. Sensitivity is calculated for all kinetic parameter 
regarding to all 100 time points of the output time course 
evolution. Regional method is used for all experiments and 
the number of sampling points N is set to 100.000.  

The computation time of sensitivity analysis is divided 
into two periods. The first one is the total time needed for 
evaluating the model regarding to the N input samples while 
the second period is the time needed for sensitivity 
estimation after model evaluation has been completed.  To 
evaluate the efficiency of our parallelization, we used the 
speed-up in clock time with increasing numbers of 
processors. The speed-up is defined as the clock time for a run 
with one processor divided by the clock time for the same run 

Figure 2: The software platform for biological system 
modeling 
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on multiple processors. As show shown in Figure 3, the speed-
up in model evaluation step and sensitivity estimation steps are 
relatively linear with the number of processors. 

The software package was deployed on our cluster 
system which consists of 30 nodes, each has from 4 to10 
cores. The total number of cores is 272. The system is 
running CentOS operating system. For exposing web-service 
to external users, Opal [19] is used to wrap our command 
line interface tools then deployed on a Tomcat web server. 
The provided web-service can be accessed by using Opal 
web-service client tool and ready for integrating to workflow 
systems. 

V. CONCLUSION 
In this work, we developed a software package for 

estimation of global parameter sensitivity. Most available 
GSA methods were implemented and parallelized to work on 
high performance computing systems. The software package 
consists of an open source library and a command line tool 
which can run on multicore desktop environment as well as 
HPC cluster systems. The tool was deployed on our cluster 
system to provide web-service. With a built-in efficient ODE 
solver engine and interface to SBML file format, the 
software will benefit system biologists in both convenience 
and performance.  
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Figure 3 Scaling of run time with number of cores 
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