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Abstract— Alzheimer’s disease (AD) is currently the most
common form of dementia affecting the elderly, and its
occurrence rate is only expected to increase over the next several
decades. Though there is a vast array of knowledge about
individual molecules and genetics involved with the disease, there
is no clear understanding of the mechanism of pathogenesis. To
help better understand the disease process, a graph theoretic
model was developed that studies both the concentration of
molecules thought to be involved in pathogenesis (Ap,
interleukin-1, tumor necrosis factor alpha, cholesterol, ATP
levels), as well as the cell number in a small location in the brain.
Particular emphasis was put on the role of the inflammatory
process in AD progression. This represents one of the first
models that uses graph theory combined with a systems biology
approach to study AD.
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I. INTRODUCTION

Alzheimer’s disease (AD) is the most common form of
dementia affecting the elderly, and its occurrence rate is
expected to increase in coming years as the average age of the
US population increases. AD is characterized by the loss of
short-term memory, with progressive loss of long-term
memory as the disease progresses [19, 31]. Other symptoms
include depression, labile mood, loss of voluntary muscle
control and cognitive decline. There is currently no known
effective treatment to prevent or stop the progression of AD,
and the disease often leads to fatal complications.

At the cellular level, AD has been characterized by the
presence of beta amyloid (AP) plaques and neurofibrillary
tangles of the tau protein on histological examination [12].
Recent studies have shown that the oligomeric form of AP is
neurotoxic and can suppress long term potentiation necessary
for memory formation [34]. Other studies have drawn
attention to the importance of neuroinflammation in the
disease process, citing that inflammation may play a
significant role in AD initiation and progression [1,15,21,30].
Beta amyloid induces the production of pro-inflammatory
cytokines (IL-1, TNFa), which may lead to subsequent
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increased production of AP, thus creating a positive feedback
loop that leads to progressively higher levels of AP and
inflammation [35-37]. The pro-inflammatory environment
itself is detrimental to neurons and can lead to neuronal loss
and synaptic dysfunction over time. Inflammation is balanced
by the generation of IL-6 by microglia, a cytokine that inhibits
the secretion of IL-1 and TNAao.

Dysregulation of lipid metabolism has also been implicated
in AD [3,6,14,16,23]. Cholesterol has been identified as one
of the key lipids that is dysregulated, though its exact
mechanism in the AD process is not well understood. It is
believed that high levels of plasma cholesterol and low levels
of brain cholesterol correspond to a significantly increased risk
for AD. Cholesterol has also been shown to inhibit the
production of beta amyloid, though some studies do not agree
with this conclusion [9,16,24].

ATP levels and mitochondrial dysfunction have also been
observed in AD [22,39-42]. Depletion of ATP leads to a
cascade of worsening mitochondrial dysfunction and cellular
damage [43]. Decreased ATP initially leads to decreased
functioning of several key channels, most notably failure of
the Na+/K+ ATPase (leads to accumulation of intracellular
Na+, cell swelling and dilation of the ER) and failure of the
Ca2+ pump (leads to influx of Ca2+. Release of Ca2+ from
intracellular stores (especially the mitochondria) occurs early
during the insult, and is maintained by Ca2+ influx across the
dysfunctioning plasma membrane. If maintained for extended
periods of time, ATP depletion will eventually lead to protein
misfolding and a significant reduction in protein synthesis.
The increased intracellular Ca2+ levels leads to activation of
the mitochondrial permeability transition pore, activation of
endonucleases, proteases, phospholipases and ATPases; and
the induction of apoptosis via release of cytochrome c into the
cytosol when permeability of the outer membrane of the
mitochondria is increased.

Given the complexity of the networks involved in AD,
mathematical modeling provides an excellent approach to
studying the effects of alterations in one of the many
molecules that has been suggested to play a role in AD



pathogenesis. Few models have been developed to date that
studies AD from a systems biology perspective. Previously
developed models have used differential equations to study
how microglia respond to chemotactic signals, as well as
studied basic interactions between neurons and other cell types
[4,7]. To date, no model has taken a systems approach and
studied both the role of cholesterol and inflammation in the
pathogenesis of AD, as has been done here.

This paper gives a brief overview of the mathematical
model that has been derived. A graph theoretic approach has
been used to study the network, with each node representing a
chemical species and edges representing a reaction or
interaction. Particular focus on the inflammatory pathway and
cholesterol-beta amyloid interactions has been taken. Cell
number is dynamically modeled, changing in response to
environmental cues for apoptosis or transmigration.
Molecular interactions that have significant biological study
and data to help define a pathway have been studied. Nodes
were identified as significant if the biological data had
identified a key role for them in the disease process, if nodes
had a high degree and thus had a larger effect on downstream
signaling, or both. The remainder of the paper will define the
parameter space, discuss the details of the model, describe the
network and corresponding equations, and give results of a
basic simulation.

II.  MODEL DEFINITION

Figure 1: Network graph. Red nodes represent molecules involved in the
inflammatory process; green nodes represent proteins; orange nodes represent an
interaction with ApoE; blue nodes represent molecules involved in energy
metabolism; light blue nodes represent protein-lipid complexes; and purple
nodes represent lipid metabolism. Conservation of mass allows molecules to
interact in more than one set of interactions. The graph drawn here is undirected,
though directed edges were used in the modeling process.

A. Definition & Topology

The brain is composed of several key cell types, including
neurons, microglia, astrocytes and brain endothelial cells. In
this model, emphasis has been put on the metabolic
interactions between these cell types; the physical processes of
diffusion, mechanical or osmotic forces from plaques or
excess local concentrations of chemicals, respectively, and the
diffusion of neurotransmitter across synaptic clefts have been
considered trivial. Each cell type has intrinsic pathways
necessary for energy and protein production. All cell types are
also able to produce lipids required for maintenance of their
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cell membrane via the malonyl CoA pathway. In the adult
brain, astrocytes synthesize cholesterol and transport it to
neurons via the LRP-1 receptor.

A graph depicting the metabolic pathways was created to
study the key intra- and intercellular interactions between
different cell types within the brain. Nodes (denoted by
capital letters A, B, etc) represent a particular chemical
species, while edges represent the reactions or interactions
(inhibition or activation, denoted by <A,B>).

B. Nodal Analysis

The relative importance of each node was assessed by
calculating the degree. The degree describes the number of
edges coming into (degree in) or coming out of a node (degree
out). A higher degree suggests that the node is key to the
stability of the overall network since several paths converge on
that node.

Table 1: Degree of nodes

Node Degree | Degree | Node Degree Degree
In Out In Out

APP 1 1 pyruvateA 1 1
ABN 3 3 ACoA_A 1 3
PyruvateN 2 1 HmgCoA_A 1 2
ACoAN 2 3 Mevalonate 2 2
Ach 2 1 CholA 2 2
CholN 1 1 ApoE 1 1
1L-1 4 5 ApoE*Chol 1 1
LRPN 2 1 ABECS 1 3
ATPN 3 0 | AR EC 1 2
ATPM 3 0 LRP_EC 2 0
TNFa 3 2 1IL-6 1 2

III. MODEL EQUATIONS

The following paragraphs describe in further detail the
equations and methods that were used to model the above
network. Metabolic reactions were simplified to represent
only the most relevant nodes of the pathway. Glucose levels
are directly proportional to pyruvate levels in many cell types
as the reaction has a relatively large —AG with several
irreversible phosphorylation events driving the reaction
forward. Pyruvate is transformed to acetyl coenzyme A via
the action of pyruvate dehydrogenase (PDH), an enzyme that
has been shown to be inhibited by beta amyloid [5, 22]:

ACoAN(n + 1,1) = ACoAN(n,1) + pyrN(n,1) — 0.9ACoaA(n,1)
— 0.1ACoAN(n,1) (1)

From acetyl coenzyme A (ACoA), the network branches to
include paths to the citric acid cycle (TCA), the malonyl
coenzyme A pathway and to acetylcholine generation in
neurons, or cholesterol generation in astrocytes. TCA is the
major source of cellular ATP, producing 12 ATPs per acetyl



CoA molecule. The transition from pyruvate to acetyl CoA
produces an additional 3 ATP molecules per pyruvate.
Complex IV of the electron transport chain has been shown to
be inhibited by elevated beta amyloid levels [5], and has been
incorporated here as an inhibitor of ATP generation (denoted
by 14):

ATPN(n + 1,1) = 0.05r¢ATPN(n, 1) + 12AC0oAN(n, 1) + 3pyrN(n, 1) (2)

Cholesterol generation occurs mainly by astrocytes in the
adult brain since it is such an energy intensive process.
Cholesterol production proceeds from HmgCoA through the
mevalonate pathway through many precursors (not modeled
here). Cholesterol is an important starting molecule for further
reactions that generate other steroid molecules, including
cortisol and the sex hormones. Elevated levels of cholesterol
inhibit the action of HmgCoA reductase activity on the
conversion of HmgCoA to mevalonate. Its transport to
neurons is dependent on the levels of the ApoE and LRP
proteins [14,17]. ApoE (apolipoprotein E) acts as a carrier
molecule between astrocytes and neurons, while the LRP (low
density lipoprotein-related protein) transports cholesterol into
neurons [8]. Interestingly, LRP is also responsible for the
majority of transport of beta amyloid out of the brain and into
the plasma. This relationship has been modeled here by the
following two equations, depending on whether ApoE or LRP
is the dominant molecule:

cholN(n + 1,1) = 0.05choIN(n,1) + LRPN(n,1) (3)
cholN(n + 1,1) = 0.05choIN(n, 1) + apoechol(n,1) (4)

Within the brain, the innate immune response is the primary
inflammatory response to irritants [22], and was modeled by
describing the levels of IL-1, TNFa and IL-6 with respect to
each other and to the level of beta amyloid [2,11,15,26-28].
TNFa is produced predominantly by activated microglia, and
has a variety of effects, depending on the concentration that it
is expressed at. At low concentrations (<10°M), TNFa leads
to local inflammation, stimulation of integrin expression by
brain endothelial cells that leads to increased transmigration of
leukocytes across the blood-brain barrier (BBB), and
stimulation of endothelial cells and microglia to produce
chemokines and cytokines, such as IL-1 [21,25]. At increased
concentrations, TNFa acts on the hypothalamus, increasing the
synthesis of prostaglandins and leading to fever. Prolonged
increases in TNFa levels can lead to cachexia due to appetite
suppression and decreased synthesis of lipoprotein lipase
(necessary to remove lipids from LDL). If levels increase
systemically, hypoglycemia may occur, as well as
intravascular thrombosis. This has been represented by the
following equation, where g; and g, represent the production
of TNFa by brain endothelial cells and microglia, respectively:

TNFalpha(n + 1,1) = g,M(n, 1) + 0.5TNFalpha(n, 1) (5)

Interleukin-1 (IL-1) is produced by activated microglia,
astrocytes and brain endothelial cells. Increased levels of IL-1
also lead to increased integrin expression by brain endothelial
cells and subsequently increased transmigration of leukocytes
into the brain with differentiation into microglia [10,11]. IL-6
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i1s known to inhibit the secretion of both IL-1 and TNFa, and
has been included as a repressor in this model (rs):

1 2
ILi(n+ 1,1) = IL1(n, 1) + E—SEC(n, D+ f—SM(n, D (6
L6(n+1,1) = gsM(n,1) + IL6(n, 1)  (7)

Iv.

Model equations were simulated using Matlab and were run
for 10,000 time steps (each step corresponds to a single day).
Nodes were updated at each time step in response to the values
of surrounding connected nodes and the above equations.
Initial values were set to zero for molecules that are present in
low number (including AP and all inflammatory molecules) in
this set of simulation runs. Cell number changed in response
to the concentration levels of inflammatory molecules and beta
amyloid levels.

The basic model conditions were run here to demonstrate
the ability of the model to give reasonably accurate results.
The basic simulation showed stable results that converged to
reasonable values within the simulation window. Cell number
was constant since no perturbations to the inflammatory state
or beta amyloid level were modeled here. Beta amyloid levels
varied depending on the stochastic generation rate. ATP
levels initially decreased before converging, while IL-1 levels
varied between 0 and 20 units depending on the AP level.

RESULTS
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Figure 2: Simulation results of key molecules. Beta amyloid, IL-1, neuronal
cholesterol and neuronal ATP levels were monitored. AP levels carried
noise in transcription rates that were due to stochastic production rates.
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Figure 3: Simulations of cell number: The number of each key cell
type was dynamically modeled and is able to be altered depending on
the concentrations of IL-1, TNFa and Ap.
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The role of increased levels of inflammatory molecules due
to either increased beta amyloid levels or independent
increases in the levels of the pro-inflammatory molecules IL-1
and TNFa were also studied.
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Figure 4: Simulations results of increased beta amyloid generation.
(A) describes the effects of a 33% increase in AP generation, while
(B) describe the effects of a doubling in the AP generation. Neither
led to a significant change in any molecule other than beta amyloid.
(C) describes a 100x increase in beta amyloid generation. In this case,
neuronal cholesterol levels increase by a factor of about 10, while
neuronal ATP levels lose much of the variability that they had in the
control simulation.
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Increasing the rate of generation of beta amyloid by
33% led to a mild increase in average and peak AP levels as
expected. No significant differences between the control
simulation levels and the modified simulation values were
observed for IL-1, neuronal cholesterol and neuronal ATP
levels. Cell number did not vary either (figure not shown).
When beta amyloid generation rates were increased 100-fold,
neuronal cholesterol increased approximately 10-fold.
Neuronal ATP levels also lost some of the variability in levels
that had been seen with previous simulations. As expected,
microglia doubled in number (from one respective microglia
to two microglia).

The effect of the pro-inflammatory molecules 1L-1
and TNFa derived from sources external to the immediate
system was also studied by introducing a short-term, single
stimulus (10 time steps) and a long-term single stimulus (100
time steps). For the single, short-term stimulus, neuronal
cholesterol peaked around the initial rise in IL-1 and TNFa
and remained there for the remainder of the simulation.
Interestingly, beta amyloid levels decreased to a lower average
value after the short pulse of inflammation, while neuronal
ATP levels increased slightly (~5%) though not significantly.
Microglia number doubled and also remained increased for the
remainder of the simulation.
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Figure 5: Simulations results of short term single stimulus of pro-
inflammatory molecules IL-1 and TNFa from an external source.

For the long term increase in pro-inflammatory molecules,
beta amyloid levels decreased significantly immediately
following the stimulus before slowing increasing upwards.
Neuronal cholesterol levels peaked temporarily around the
initial rise in IL-1 levels, before returning to pre-stimulus
levels. IL-1 levels increased significantly throughout the
remainder of the simulation with a perioidc trend as the
number of microglia also increased. The number of neurons,
astrocytes and endothelial cells did not vary during this
simulation, though a longer simulation time may have shown a
decrease in neuron number. Neuronal ATP levels were
comparable to the control simulation.
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Figure 6: Simulations results of long term single stimulus of pro-
inflammatory molecules IL-1 and TNFa from an external source.

V.

The basic simulation results demonstrated a model that was
stable for a range of input values. As expected, all values of
inflammatory molecules were negligible over the duration of
the simulation, though TNFa varied slightly between 0 and 20
units.  All other molecules (proteins, lipids, molecules
involved in glycolysis) converged within several time steps.
In the basic simulation, the cell number does not change since
there is no stimulatory input, though its ability to change was
tested (not shown here).

Simulations studying the role of pro-inflammatory
cytokines IL-1 and TNFa showed interesting results. Short-
term inflammation can effectively be countered by the body
and have little long-term effect on the level of
neuroinflammation. However, these simulations suggest that
both short term and long term inflammation may actually be
beneficial to decreasing beta amyloid levels. However, long-
term exposure to pro-inflammatory cytokines is not easily
counteracted by the brain and can lead to a prolonged state of
inflammation that gets progressively worse and recruits a
significant number of microglia via transmigration. Though
not studied here, if this trend were to continue, it could lead to
decreased neuron number. Prolonged inflammation also
triggered a slow increase in beta amyloid levels after the initial
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decrease, which would have additional negative effects on
neurons.

Mathematical modeling provides a useful method for better
understanding the complex networks involved in the
pathogenesis of AD. It allows the opportunity to manipulate
the system with specificity that cannot be easily achieved
using biological methods only. However, one of the
drawbacks to modeling is the current lack of a sufficient
amount of biological data derived from human trials to fit the
model to, including the lack of consistent rate constants in the
literature. This impasse is slowly being overcome as more
databases with AD data are published and as better methods to
study proteomic changes become available (for a good
example of this see [44]). There is a significant need to
perform a meta-analysis of currently available AD data to help
determine which molecules and pathways play a key role in
the pathogenesis process.

In this paper, a mathematical model was developed that
describes the inter- and intra-cellular interactions between the
four main cell types within the brain. This model specifically
looks at the role of the inflammatory pathway in AD
pathogenesis, and allows for monocytes to traverse the BBB
and differentiate into microglia in response to increased levels
of IL-1 and TNFa (a process known as transmigration). Cells
can also enter apoptosis and leave the cell pool if ATP levels
decrease below a certain threshold, allowing for dynamic
modeling of cell number.

Future work will focus on further developing this model to
include the role of cortisol and a more detailed inflammatory
response. Stochastic rate constants will also be used in future
models to better represent the probabilistic nature of
transcription and translation. Simulations studying the role of
these processes in further detail will also be completed to
better understand the importance of the inflammatory process
and altered cholesterol levels in AD pathogenesis.

Development of detailed mathematical models will open
new avenues to personalized medicine. As this model
develops into a more complex network, it will become
increasingly useful to clinicians as a method to be able to
predict the outcomes of individual patients as their disease
progresses by taking into account genetic variations such as
the ApoE4 allele or the presence of an underlying systemic
inflammatory state like diabetes, thus allowing physicians the
opportunity to tailor treatment and provide personalized
medicine.
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