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Abstract—In recent years, there has been widespread interest 

and a large number of publications on the application of graph 

theory techniques into constructing and analyzing biologically-

informed gene networks from cancer cell line data sets. 

Current research efforts have predominantly looked at an 

overall static, topological, representation of the network, and 

have not investigated the application of graph theoretical 

techniques to evolutionary investigations of cancer. A number 

of these studies have used graph theory metrics, such as 

degree, betweenness, and closeness centrality, to identify 

important hub genes in these networks. However, these have 

not fully investigated the importance of genes across the 

different stages of the disease. 

 Previous human glioblastoma publications have identified 

four subtypes of glioblastoma in adults, based on signature 

genes. In one such publication, Verhaak et al. found that the 

subtypes correspond to a narrow median survival range, from 

11.3 months for the most aggressive subtype, to 13.1 months 

for the least aggressive one. 

In this work, we present an evolutionary graph theory 

study of glioblastoma based on survival data categorization, 

confirming genes associated with different survival times 

identified using established graph theory metrics. The work is  

extending the application of graph theory approaches to 

evolutionary studies of cancer cell line data. 
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I.  INTRODUCTION 

Progress in technology, in recent years, allowing 

measurements of biological data, such as DNA sequencing, 

protein-protein interactions and gene expression profiles, 

has led to an increase in the amount of biological data that 

has become available for further analysis. As a result, tools 

and techniques used in other disciplines, such as computer 

science and engineering, have been applied to this data. One 

particular approach adopted is that of gene networks, which 

enables gene interactions to be modeled and visualized. 

Various mathematical approaches have been used to 

construct these networks; such as correlation networks [1], 

Bayesian networks [2], and mutual information networks 

[3]. These networks can then be analyzed using established 

centrality metrics, such as degree centrality, betweenness 

centrality, and closeness centrality.  However, these 

approaches tend to focus on ‘static’, topology-based,  

representations of data; grouping all the data together and 

representing it as a single model [4]. In a number of 

biological scenarios, the evolution of the data is of interest, 

and an overall static representation may not be informative 

enough. One such example of this being cancer data sets, 

where a data set contains information from a number of 

cancer cell lines at different evolutionary stages of the 

disease.  

To deal with this issue, we propose an evolutionary 

approach to constructing networks for genomic cancer data 

sets. A publically available glioblastoma data set from a 

previously published study is used to illustrate this method 

[5]. Glioblastoma is the most common primary malignant 

brain tumour in adults and also one of the most lethal forms 

of cancer, with a median survival time of only 14 months 

from the time of first diagnosis [6]. Previous glioblastoma 

studies, such as that by Verhaak et al, have identified four 

glioblastoma subtypes, and a number of signature genes that 

correspond to each subtype [7]. This particular study found 

that the four subtypes had a narrow median survival range, 

from 11.3 months for the most lethal subtype, to 13.1 

months for the least lethal subtype.  Whilst identifying 

genes that correspond to each subtype, this study did not 

identify genes that are associated with both poor 

glioblastoma prognosis, i.e. low survival time, and better 

glioblastoma prognosis, i.e. longer survival time. In this 

paper, the proposed methodology identifies genes that are 

associated with different survival times in glioblastoma cell 

lines, and can therefore be used as potential prognostic 

biomarkers of the disease. 
 

II. METHOD 

A. Categorising the Data Set 

The dataset consists of two independent sets of clinical 

tumour samples, 55 and 65 samples, respectively, obtained 

at the time of surgery at UCLA [5].  Gene expression 

profiling of these samples was carried out using Affymetrix 

high-density oligonucleotide microarrays [8]. 

Survival data is available for all these samples, allowing 

categorization of the samples based on survival time. Across 
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the 120 samples in the dataset, the mean survival time is 

447.29 days, with a standard deviation of 426.15 days. It is 

worth noting that the mean value for survival correlates very 

closely to the afore-mentioned median survival time of 

around 14 months, indicating that this is a typically 

representative glioblastoma dataset. The high value of the 

standard deviation across the samples, compared to the 

mean value, shows how the range of values varies greatly. 

This is shown with the minimum survival time of 7 days, 

and the highest survival time of 2807 days, giving a range of 

2800 days.  These high values for both the range and 

standard deviation give an indication of the potential 

prognostic differences amongst the samples within the 

dataset. It also highlights the issue with taking an overall 

view of the dataset and creating a single network; a vast 

amount of information about the evolution of the stages of 

the cancer is potentially lost. 

From the data, five categories of samples were created, 

using survival time as the class discrimination. The five 

categories are as follows: 

 

 200 or fewer survival days 

 201- 400 survival days 

 401- 600 survival days 

 601- 800 survival days 

 801 and more survival days 

B. Constructing the Networks 

For these five categories identified, networks are 

constructed from the samples belonging to each group. The 

WGCNA [1] library  of functions for the open source 

statistical analysis programming language R [1, 9] is used to 

construct a weighted gene correlation network for each 

category, using a soft threshold power to construct a scale-

free network We assume a scale-free character based on 

previous work. Instead of having a random Poisson 

distribution of connections, scale-free networks have a 

power law distribution of connections [10]. In  a number of 

studies, it has been shown that many biological networks 

have this feature, with a few highly connected nodes, and 

many low connected nodes [11, 12]. In fact, many biologists 

would be wary of a gene network that was not scale-free 

[13].  

Once the weighted networks have been constructed, all 

edges with a weight of less than 0.2 are removed. This is 

done for two reasons. The first is for biological significance; 

interactions with a weight of less than 0.2 are unlikely to be 

biologically meaningful. The second is for computational 

reasons; calculation of betweenness centrality for each of 

the original five networks takes around 30 hours, in the 

network with edges less than 0.2 removed it takes under 30 

seconds.  

C. Analysing the Networks 

The network metrics of betweenness, closeness, and 

degree centrality are calculated using the igraph library of 

functions in R [14]. For accurate calculation of metrics of 

weighted networks, igraph version 0.6 and later is required.  

The most commonly applied metric to network analysis is 

the degree centrality. This metric measures the degree of a 

node, how many other nodes it is connected to [15]. 

Extending this for weighted networks, a more useful metric 

is to measure the sum of the edge weights that a node has to 

other nodes. As such, this metric will be used, and will be 

referred to as degree centrality in this paper. Two other 

commonly used centrality measures are the betweenness 

centrality, and the closeness centrality. The betweenness 

centrality measures how many shortest paths in a network 

pass through a node [16]. This gives a measure of how 

important a node is in terms of controlling the flow of 

information in a network. The closeness centrality gives a 

measure of how close a node is to other nodes in a network, 

with the distance measured as the shortest path between two 

nodes [15]. 

Rankings are assigned to each node in the five networks 

for each of these metrics, which are then added together, 

and each gene is then re-ranked based on the total of these 

scores. This gives the overall ranking score for each node in 

each category of network. By using the ranking score of 

each metric, as oppose to the raw score, this ensure that each 

metric has equal weighting. The figure below shows a plot 

for the raw total scores for each category. As can be seen 

from this figure, there is a big difference between the genes 

with the highest raw scores, and the lowest raw scores. This 

can in part be attributed to the previously mentioned scale-

free behavior; many genes have low degree, thereby having 

a low raw score for degree, whilst a few have  high degree, 

thereby having high raw score for degree. 
 

FIGURE I        TOTAL RAW SCORES OF NETWORK CATEGORIES 
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D. Investigating the Top Ranked Genes 

Having identified 20 genes of interest in each category 
based on their rankings, the next step is to see whether any of 
these genes have previously been identified as being of 
interest for glioblastoma. There are a large number of 
publications on glioblastoma, and as such, it would be 
impossible to consult every single one. Therefore, a number 
of tools will be used to help with this, namely The Cancer 
Genome Atlas, the IntOGen browser, and CGPrio [17-19]. 
Using these tools one can highlight whether a gene has been 
previously identified as a gene of interest. 

III. RESULTS 

Having calculated the ranking for each gene in the five 
categories of network, the results are presented in the 
following five sub-sections. Each sub-section presents the 
top 20 ranked genes for the combined degree, betweenness, 
and closeness centrality rank in that category. As well as 
using these metrics, a Spearman Rank correlation coefficient 
score has been calculated for the common genes in each 
category of network, to allow further detailed comparison.  

A. 200 or fewer survival days category 

Table I below shows the top 20 ranked genes in the 200 or 

less survival days category. There are a number of results 

from this list that stand out. The most notable here is 

SNAP91, which has been identified in a number of studies 

as a signature gene of the proneural glioblastoma subtype. 

This is the only signature gene of any glioblastoma subtype 

that occurs in the top 20 ranking. The 2
nd

 ranked gene in this 

list, SYT1, is highly ranked as an oncogene by CGPrio, and 

is also identified in a glioblastoma study by Dong et al as 

being a candidate gene for the disease [20].  The 9
th

 ranked 

gene, PRKCZ, has been identified in 3 glioblastoma gene 

lists by the cancer genome atlas gene checker. PRKCZ has 

also been show to be crucial to proliferation in glioblastoma 

cell lines [21]. 8 of the top 20 ranked genes in this category 

do not appear in the top 20 rankings for any of the other 

categories, including the top 4 ranked genes. This suggests 

that these genes identified as being important in this 

category do not have such an important role in the other 

categories of network.  
In contrast, of the 12 genes in the top 20 list that do 

appear in top 20 lists for other categories, 3 genes, SNAP91, 
SYN1, and RGS7 appear in three of the five top 20 lists, 
including this category. SNAP91 has already been 
highlighted, however the two other genes have not 
previously been identified as candidate glioblastoma genes, 
and this suggests that they may play a role across various 
stages of the glioblastoma life cycle.  

TABLE I TOP 20 RANKED GENES 200 OR LESS SURVIVAL DAYS CATEGORY 

Gene Overall Rank Gene Overall Rank 

AK5 1 SLC17A7 11 

SYT1 2 MAST3 12 

MAP1A 3 SYN1 13 

HSPA12A 4 PAK6 14 

SNAP91 5 VAMP2 15 

SULT4A1 6 RGS7 16 

EPB41L1 7 MOAP1 17 

SCN2A2 8 NAP1L2 18 

PRKCZ 9 NRGN 19 

STXBP1 10 CYFIP2 20 

 

B. 201-400 survival days category 

Table II below shows the top 20 ranked genes in the 201-

400 survival days category. Once again, the presence of 

SNAP91 amongst the top 20 ranked genes stands out. The 

second result of note is that the two top ranked genes are 

both solute carriers; SLC9A6 is a sodium/hydrogen 

exchanger, and SLC8A2 is involved in sodium/calcium 

exchange. This result would suggest that the exchange of 

sodium plays a role in glioblastomas within the 201-400 

survival days category, and potentially is an area of interest 

for glioblastoma studies. 10 of the top 20 ranked genes in 

this category do not appear in the top 20 rankings for any of 

the other categories, including the top 2 ranked genes 

previously discussed. This potentially suggests that the 

importance of sodium exchange is limited to glioblastomas 

within this category, and that, as before, there are a number 

of genes identified as being important in this category that 

do not have such an important role in other categories. 

     Of the 10 genes that do appear in top 20 ranked lists in 

other categories, there are again 3 genes that appear in three 

of the five top 20 lists, including this category. As well as 

SNAP91, these include PPP1R16B, and MGC8407. Whilst 

these two genes have not been specifically identified as 

candidate glioblastoma genes, it should be noted that 

MGC8407 has been identified as potential cancer gene 

target by the Broad Institute research group [22].  

TABLE II TOP 20 RANKED GENES 201-400  SURVIVAL DAYS CATEGORY 

Gene Overall Rank Gene Overall Rank 

SLC9A6 1 MGC8407 11 

SLC8A2 2 DYNC1I1 12 

INA 3 PHYHIP 13 

SNAP91 4 KCNAB2 14 

PPP1R16B 5 NAP1L2 15 

MEF2C 6 MAST3 16 

WDR7 7 NP25 17 

CYFIP2 8 KIAA1940 18 

KIAA0513 9 STXBP1 19 

PDE2A 10 MOAP1 20 

 

C. 401-600 survival days category 

Table III below shows the top 20 ranked genes in the 401-

600 survival days category. The previously mentioned genes 

MGC8407, SYN1 and RGS7 appear in this list, and are 

again the only genes that appear in two other top 20 ranked 

lists, as well as this one. The presence of gene EPHB6 is 

interesting; as well as being identified in one glioblastoma 

specific gene list, it has also been identified as being on six 

other cancer gene lists, such as ovarian cancer and breast 

cancer, by the cancer genome atlas. SH3GL2 is another 

glioblastoma gene of interest identified in the glioblastoma 
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study by Dong et al, and also a 2008 study by Chang [23]. It 

is also a signature gene of the neural glioblastoma subtype, 

as are the genes CPNE6, and HPCAL4. It is worth noting 

the presence of 3 neural subtype signature genes in the top 

20 ranked genes for this category.  

       13 of the 20 genes that appear in this list do not appear 

on any of the other top 20 genes lists. This is a greater 

number of unique genes than the previous two lists, 

suggesting increasingly different network behavior as the 

survival time increases. It also suggests that genes that are 

important for the behavior of the network in the two 

previous categories are not as important for the function of 

the network in this category, and that different processes are 

taking place that these genes are not involved in. 

TABLE III TOP 20 RANKED GENES 201-400  SURVIVAL DAYS CATEGORY 

Gene Overall Rank Gene Overall Rank 

RIMS3 1 BZRAP1 11 

MGC8407 2 SH3GL2 12 

CA11 3 PCSK2 13 

CHGB 4 PRKAR1B 14 

GLS2 5 HPCAL4 15 

NELL2 6 MYRIP 16 

EPHB6 7 CPNE6 17 

INA 8 SYN1 18 

GAD2 9 PAK6 19 

KIAA1107 10 RGS7 20 

 

D. 601-800 survival days category 

Table IV below shows the top 20 ranked genes in the 

601-800 survival days category. The 2
nd

 ranked gene, 

VAMP2, which is the 15
th

 ranked gene in the lowest 

survival category network, is ranked by IntOGen as having 

a high probability of being an oncogene, as is the 5
th

 ranked 

gene SCAMP5. This would suggest that these genes are 

highly likely to be involved in interactions with other genes, 

and the high ranking results here concur with that 

prediction. The gene PRKCZ is the 20
th

 ranked gene in this 

list, having previously been highlighted as being 

fundamental in glioblastoma proliferation in human cell 

lines.  

There are again 13 unique entries on the top 20 ranking 

list for this category of network, suggesting, as was the case 

with the last network category, that there is markedly 

different behavior in the network, compared to the other 

categories of network. The three genes in this list that also 

occur in two other lists are PPP1R16B, RGS7, and the 

proneural signature gene SNAP91.  

TABLE IV TOP 20 RANKED GENES 601-800  SURVIVAL DAYS CATEGORY 

Gene Overall Rank Gene Overall Rank 

TUBB 1 SNAP91 11 

VAMP2 2 ATP6V1G2 12 

HLF 3 RGS7 13 

ARHGEF9 4 GFOD1 14 

SCAMP5 5 PDE2A 15 

PPP3CB 6 ATP2B2 16 

SNPH 7 CHGA 17 

PPP1R16B 8 EPB49 18 

GOT1 9 S100A1 19 

IQSEC3 10 PRKCZ 20 

 

E. 801+ survival days category 

Table V below shows the top 20 ranked genes in the 801+ 

survival days category. The presence of GABRD and 

GABRA1 as the top two ranked genes is immediately 

noticeable, suggesting that the GABR area is of interest. In 

fact, whilst these two genes are not signature genes of any 

glioblastoma subtype, the gene GABR2 is a proneural 

signature gene, as identified by Verhaak et al [7]. The 9
th
 

ranked gene, KALRN, appears in 3 glioblastoma gene lists 

in the cancer genome atlas gene ranker, as well as appearing 

in 3 other cancer gene related lists. 

      As with the two previous categories, there are 13 unique 

entries on the top 20 ranking list for this network. There are 

also 3 genes in the list below that also appear on two other 

lists, these genes are MGC8407, SYN1, and PPP1R16B.  

TABLE V TOP 20 RANKED GENES 801+  SURVIVAL DAYS CATEGORY 

Gene Overall Rank Gene Overall Rank 

GABRD 1 GLS2 11 

GABRA1 2 CACNG3 12 

EPB41L1 3 SLC12A5 13 

BSN 4 KIAA1107 14 

MGC8407 5 PNOC 15 

DRD1IP 6 ARK5 16 

NY-REN-7 7 SYN2 17 

SYN1 8 CABP1 18 

HAPIP 9 GOT1 19 

PPP1R16B 10 SNCB 20 

 

F. Spearman Rank Correlation Coefficient Scores 

Having calculated the overall ranks for each gene in the 
five categories of network, the next step is to calculate the 
correlation between the common genes in the different 
categories of network. Previously, it had been noted that a 
number of genes occur in more than one top 20 ranked list. 
As such, extending this to calculate the correlation between 
all the common genes in the categories gives a good way of 
measuring how similar the networks are in terms of ranking 
the nodes by the centrality measures. Table VI below shows 
the Spearman Rank correlation coefficient scores for all pairs 
of networks. The high score for correlation between the two 
lowest survival categories, 0.75, and the relatively low scores 
for the highest survival category with all the other network 
categories stand out. 

TABLE VI SPEARMAN RANK CORRELATION COEFFICIENT BETWEEN THE 

DIFFERENT CATEGORIES OF NETWORK 

Category 200 201-400 401-600 601-800 801+ 

200 1 0.753619 0.695625 0.66201 0.525223 

201-400 0.753619 1 0.673188 0.693234 0.562439 

401-600 0.695625 0.673188 1 0.581407 0.514119 

601-800 0.66201 0.693234 0.581407 1 0.509671 

801+ 0.525223 0.562439 0.514119 0.509671 1 
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IV. CONCLUSIONS 

There are two main areas of this work that conclusions 

can be drawn from. The first area to concentrate on is the 

gene rankings in each category. There are 57 unique entries 

in the five top 20 ranked gene lists. This represents quite a 

high proportion of genes being unique to one evolutionary 

category, and also that there are more unique entries in the 

top 20 ranked lists than common ones. This high number of 

unique genes suggests that the five categories of network are 

very different. This is especially relevant if previous static 

studies are considered that grouped all the samples in a data 

set together and constructed one network to represent their 

behavior, it is quite clear from this study how different the 

behavior of sample at different evolutionary stages is. 

There are 14 genes that appear in two lists. 9 of these 

appear in the first two categories, suggesting that these two 

categories are the most similar based on the top ranking 

genes. These two categories are the two with the lowest 

survival days, so a reasonable presumption would be to 

suggest that these 9 genes play a role in the later stages of 

glioblastoma. It is also worth noting the very high 

correlation that these two categories have for common 

genes, 0.75, which is the highest correlation for any two 

categories. This again suggests that these two categories are 

similar. 5 genes appear in three lists, including SNAP91. 

Their presence in lists across the evolutionary stages would 

suggest they are involved in processes that are common 

throughout the glioblastoma life cycle, and that they do not 

play such an important role in the specific processes related 

to the evolution of glioblastoma. The Venn diagram below 

shows the overlap of genes between the different network 

categories, note that as shown by this diagram, there are no 

genes that appear either in four of five lists. 

 
FIGURE II  VENN DIAGRAM SHOWING GENE OVERLAP 

BETWEEN CATEGORIES 
 

 
 

 

The second area of focus is the biological relevance of 

these results. The identification of genes previously 

identified in a number of publications using a solely graph 

theory approach shows the biological relevance of this 

approach. Genes such as SNAP91, EPHB6, PRKCZ, 

CPNE6, HPCAL4 and SH3GL2 have been identified 

without any prior biological knowledge or bias. A number 

of glioblastoma signature genes were identified across the 

evolutionary categories using the metrics; however there 

was no correlation between the identification of these as 

being high ranking and the evolutionary category. This 

corresponds to the study by Verhaak et al that showed the 

four glioblastoma subtypes had a narrow survival range, as 

from this study, it cannot be concluded that one 

glioblastoma subtype can be significantly associated with 

any of the categories of network. The findings of this study 

suggest that high network centrality scores for specific 

genes may be a better indicator of glioblastoma survival 

time, than subtype classification.  

To conclude, this work has identified different genes as 

being of interest at different evolutionary stages of the 

glioblastoma disease progression, based on their network 

metrics. It has shown that in this study, these rankings give 

a better guide to glioblastoma survival time, than 

glioblastoma subtype categorization. Our work has built 

upon previous work, investigating the static networks of 

disease, and in the future, it is hoped that this method could 

be applied to other diseases and could be refined further, to 

aid in the discovery of potential candidate genes of interest 

in the progression, and hence prognosis, of cancer disease. 
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