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Abstract—Wireless sensor nodes (WSNs) have recently evolved
to include a fair amount of computational power, so that
advanced signal processing algorithms can now be embedded
even in these extremely low-power platforms. An increasingly
successful field of application of WSNs is tele-healthcare, which
enables continuous monitoring of subjects, even outside a medical
environment. In particular, the design of solutions for automated
and remote electrocardiogram (ECG) analysis has attracted
considerable research interest in recent years, and different
algorithms for delineation of normal and pathological heart
rhythms have been proposed. In this paper, some of the most
promising techniques for filtering and delineation of ECG signals
are explored and comparatively evaluated, describing their imple-
mentation on the state-of-the-art IcyHeart WSN. The goal of this
paper is to explore the trade-offs implied in the different settings
and the impact of design choices for implementing “smart” WSNs
dedicated to monitoring ECG bio-signals.

Index Terms—Embedded Systems, Bio-medical Signal Process-
ing, Wireless Sensor Networks, ECG Delineation, ECG Filtering.

I. INTRODUCTION

The aging of world population, coupled with others factors
such as the predominance of unhealthy lifestyles, is enlarging
the impact of cardiovascular disorders, which now represent
the most common global cause of death [1]. Supervising pa-
tients affected by cardiopathy is putting an increasing pressure
over health care systems.

Electrocardiograms (ECGs), which measure the electrical
activity of the heart, are the primary instruments for mon-
itoring the heart activity and for early detection of heart
pathologies. A breakthrough in the practice of ECGs recording
and analysis has been possible thanks to Wireless ECG Sensor
Nodes (WESNs) [2][3]: miniaturized, wearable ECG devices
that are able to wirelessly transmit relevant data, allowing the
continuous and autonomous monitoring of subjects.

The continuous progress in semiconductor technology has
enabled the emergence of “smart” WESNs that, in addition to
acquisition and transmission, perform an automated diagnosis
by interpreting ECG data [4][5]. Smart WESNs applications
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usually implement algorithms to filter acquired signals, de-
lineate individual heart beats to retrieve their characteristics
and classify them to detect pathologies. The first two steps
(filtering and delineation), focus of this paper, have the most
challenging real-time constraints, because they deal with the
manipulation and analysis of digital signals [6][7][8], as op-
posed to parameters of whole heart beats.

While proposals are described in the literature to implement
embedded delineation and filtering [9][10], a comparative eval-
uation of different methods is still lacking, and this paper aims
at filling this gap. In this work we specifically target WESN
solutions, only considering methods that can be implemented
on these resource-constrained platforms, which usually only
support integer arithmetic and present a small memory size.

While delineation could be conceptually performed on raw
signals, we do not consider this option in this work, as real-
world acquisitions are always corrupted by both low-frequency
noise sources (caused by subjects’ respiration and perspiration)
and high-frequency ones (due to muscular contractions or
misplacements of electrodes), mandating a filtering phase [6].

Filtering is here intended in broad terms, comprising all
operations that can increase the signal quality of an acquired
ECG. In this context, an important design choice whose
implication is here investigated is between adapting a high-
frequency sampling of a single signal or fusing data from mul-
tiple sensors (leads) sampled at a lower frequency. Moreover,
some of the proposed data fusion algorithms in the literature,

Fig. 1. Delineated normal sinus beat.
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Fig. 2. DWT decomposition of an ECG heart beat. Maximum-minimun
intervals examined to find the R peak are highlighted in gray.

like the iterative WT method presented in [11] or the derivative
based described in [12], are too computationally demanding
to be executed on a WESN platform. The simpler solution
employed in this study [13], is then to consider the RMS (Root
Mean Square) combination among synchronous samples from
different leads.

In addition, low-frequency noise components cannot be
mitigated by high-frequency sampling or data fusion. To filter
them, specific algorithms to eliminate baseline wandering have
to be applied; in the paper, we explore the effectiveness of
two solutions, based on cubic spline interpolation [14] and
morphological operators [8].

Filtered signals are then analyzed by a delineation pass to
find the fiducial points of each heart beat, corresponding to
the onset, peak and end of its characteristic waves: P, QRS
complex and T (Figure 1); abnormalities in the length of ECG
waves are important markers of different heart conditions.

Many approaches have been proposed to automate ECG
delineation. Some of them (such as methods based on low-
pass differentiation [6], neural netwoks [15] or hidden Markov
models [16]) present a high computational complexity, so
that they cannot be adopted in WESNs. Thus, the possible
options considered in this study are based on Digital Wavelet
Transforms (DWTs) [17] [18] and Multiscale Morphological
Derivatives (MMDs) [7] since, while also conceived as off-line
algorithms, these approaches can be optimized for real-time
embedded delineation [9] [10].

Finally, the information about the delineated points can
either be processed on the node or sent trough a wireless link to
a remote station, with or without the support of the acquired
signal. As it has been already shown in recent works, it is
worth mentioning that by transmitting only information on the
heart beat waveforms, energy efficiency can be considerably
increased by minimizing communication on the power-hungry

wireless link [10].
Overall, in this paper we explore the design space offered

by the different possible embedded filtering and delineation
choices when processing in real-time a variety of normal
and pathological ECG recordings, retrieved from the Com-
mon Standards for Electrocardiography (CSE) database [19].
Performance is assessed along three dimensions: delineation
accuracy, robustness against noise and computational require-
ments of the implementations.

We have selected as representative target WESN platform
for our exploration the IcyHeart System-on-Chip [20], which
embeds a 32-bit low-power processor (running at 6 MHz and
having 96 KB of memory), a multi-channel analog-to-digital
converter and a wireless transmission module. IcyHeart is the
first SoC presenting these three components integrated on the
same silicon die.

The manuscript proceeds as follows: in Section II and III,
the considered delineation and filtering methods, respectively,
are described. In Section IV experimental results assessing
their performance are presented. Our concluding remarks are
summarized in Section V.

II. EMBEDDED DELINEATION METHODS

A. Wavelet-based delineation

DWT delineation considers a decomposition of acquired
signals in five dyadic scales, which can be efficiently computed
using a filter bank composed by low- and high- pass FIR
filters. Scales represent derivatives of smoothed versions of the
input ECG signals, as exemplified in Figure 2. To ensure time-
invariance among different scales, the filter impulse response
is interpolated using the algorithme á trous method, illustrated
in [21].

Because the different characteristic waves of beats present
distinct frequency contents, their fiducial points are retrieved
at different scales, the QRS complex being reflected in scales
21 to 24, while P and T waves presents their major components
in scales 24 and 25.

As scales are computed, the DWT delineator searches for
maximum-moduli points at the different scales, reflecting
points of maximum slope in the acquired signals. The R peak
is identified as the zero-crossing point at scale 21 in-between
tuples of maximum moduli with different signs across scales
from 21 to 24. Dynamic thresholding is performed to reject
maximum moduli with small absolute values.

QRS onset is identified at scale 24 by a back-search for the
point where its absolute value becomes smaller than one-fourth
of the peak associated with the wave. Similarly, the QRS end
is retrieved by a forward search for the point where scale 24

becomes smaller than three-fourths of its maximum absolute
value.

Focusing on search windows before and after the QRS
complex, P and T peaks are identified as the zero-crossing
points at scale 23 between two maximum moduli either at
scale 24 or, if not such tuple is found, at scale 25. Even for
P and T waves, dynamic thresholding is employed to filter
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Fig. 3. Acquired signal (top) and its MMD-transformed version (bottom).

maximum moduli. Calculation of the onset and end of P and
T waves is then similar to the QRS case.

B. MMD-based delineation

The morphological derivative 𝑀𝑑
𝑓 of a discrete signal 𝑓 :

𝐷 ⊂ ℝ→ ℝ at scale 𝑠 is defined as:

𝑀𝑑
𝑓 (𝑥) =

(𝑓 ⊕ 𝑔𝑠)(𝑥) + (𝑓 ⊖ 𝑔𝑠)(𝑥)− 2𝑓(𝑥)

𝑠

where 𝑔𝑠 : 𝐺𝑠 ⊂ ℝ→ ℝ is a structuring element of length
𝑠 and the ⊕ (dilation) and ⊖ (erosion) operations are defined
as:

𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛 : (𝑓 ⊕ 𝑔𝑠)(𝑥) = max
𝑡∈(𝐺𝑠∩𝐷𝑥)

{𝑓(𝑥− 𝑡) + 𝑔𝑠(𝑡)}

𝐸𝑟𝑜𝑠𝑖𝑜𝑛 : (𝑓 ⊖ 𝑔𝑠)(𝑥) = min
𝑡∈(𝐺𝑠∩𝐷𝑥)

{𝑓(𝑥+ 𝑡)− 𝑔𝑠(𝑡)}

Where 𝐷𝑥 is 𝐷 translated by 𝑥.
If a flat structuring element is chosen, computing the

morphological derivative of 𝑓 can be performed by sliding a
window of size 𝑠 over the signal, and calculating the maximum
and minimum of the signal as well as its value in the central
point of the window:

𝑀𝑑
𝑓 (𝑥) =

max{𝑓(𝑡)}𝑡∈𝐼 +min{𝑓(𝑡)}𝑡∈𝐼 − 2𝑓(𝑥)

𝑠
where 𝐼 = [𝑥− 𝑠, 𝑥+ 𝑠].
As Figure 3 shows, the morphological transformation trans-

lates peaks on the input signal in pits on the transformed one,
while peaks or sudden change in slope of the transformed
signal highlights onsets or ends of waves in the input signal.

A search on the MMD transform for a negative value
exceeding a dynamically-adjusted threshold retrieves the peak
of the R wave; peaks (or sudden change in slope) around it
retrieve the onset and end of the QRS complex. Before and
after the found QRS complex, tuples of zero-crossing points
mark the presence of the P and T waves respectively. P and
T peaks are identified by the minimum value in-between the
crossing points, while their onset and end by the maximum
values before and after the crossing points.

III. MULTI-LEAD COMBINATION

WESN devices usually acquire multiple signals concur-
rently, giving the opportunity to increase the delineation per-
formance by fusing acquired data sampled in different leads. In

this paper, we adopted RMS (Root Mean Square) combination
of synchronous samples of different channels:

𝑥(𝑡)𝑅𝑀𝑆 =
√

1
𝑁

∑𝑁
𝑖=1 (𝑥𝑖(𝑡)2)

The example in Figure 4 showcases its benefits: as this
figure shows, lead I presents a small P wave, while lead III is
noisy and has a low T wave. However, their combination has
a higher quality compared to each lead in isolation.

To properly RMS-combine signals, they must be firstly
centered on the iso-electric line, eliminating low-frequency
baseline wandering. The two investigated approaches to im-
plement this step, based on cubic spline interpolation and
morphological operators are described hereafter.

A. Spline filtering (SF)

This method assumes that several time intervals of an ECG
are silent, i.e. they are devoid of any heart activity [22]. One
such segment is the interval between the P and the Q waves.
Stemming from this observation, it is then possible, by placing
“knots” on the PQ segment and fitting a cubic polynomial in
successive triplets of knots, to estimate the baseline. For each
interval between beats [𝑖, 𝑖 + 1], the knots identified for the
beats 𝑖, 𝑖+1 and 𝑖+2 are considered to derive the estimated
baseline.

Determining the knots position requires an estimation of the
QRS complex onset, which in our implementation is realized
employing a simplified DWT delineator on each lead.

B. Morphological filtering (MF)

The erosion and dilation operators introduced in Section
II-B are here used in a different scenario, to perform filtering
operations. Hence, they are combined to generate the opening
and closing functions. Opening (∘) of a function 𝑓 using a
structuring element 𝑔𝑠 is defined as:
𝑓 ∘ 𝑔𝑠 = (𝑓 ⊖ 𝑔𝑠)⊕ 𝑔𝑠
If 𝑔𝑠 is flat, this operations removes from 𝑓 peaks of length

smaller than 𝑠. Dually, closing (∙), defined as
𝑓 ∙ 𝑔𝑠 = (𝑓 ⊕ 𝑔𝑠)⊖ 𝑔𝑠
removes pits of length smaller than 𝑠. By employing

structuring elements of length greater than the longest ECG

Fig. 4. Three-leads acquisition and corresponding RMS-combined signal.
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MF+MMD MF+DWT SF+MMD SF+DWT
Sen P+ Sen P+ Sen P+ Sen P+

P onset 0.71 0.78 0.78 0.86 0.57 0.68 0.72 0.84
P end 0.68 0.71 0.79 0.82 0.64 0.73 0.72 0.81

QRS onset 0.94 0.95 0.98 0.98 0.86 0.96 0.97 0.98
QRS end 0.94 0.94 0.97 0.97 0.88 0.86 0.96 0.97

T end 0.71 0.75 0.78 0.86 0.37 0.46 0.82 0.89

TABLE I
SENSITIVITY AND POSITIVE PREDICTIVITY OF DELINEATED FIDUCIAL

POINTS (SINGLE-LEAD, 250 SAMPLES/SEC).

wave (typically, the T wave), it is then possible to derive
the appropriate baseline, that can then be subtracted from the
acquired signal.

It is worth mentioning that morphological methods can
be used also to filter high-frequency muscular noise. In this
case, structuring elements shorter than the shortest ECG wave
are instead employed to perform the opening and closing
operations.

IV. EXPERIMENTAL EVALUATION

We evaluated four different combinations of filtering and
delineation methods performing automated retrieval of the
heart beats fiducial points: highly optimized implementations
of the DWT- and MMD- based delineation algorithms were
coupled with either morphological or cubic spline baseline
wandering elimination.

To comprehensively evaluate their performance, five rounds
of experiments were conducted. Firstly, we measured their
accuracy on single lead recordings sampled at 250 samples/sec
(Section IV-A). We then explored the impact of fusing record-
ings of two or three leads (Section IV-B) and of increasing the
sampling frequency to 500 samples/sec (Section IV-C).

We also evaluated the algorithms robustness, by artificially
adding different levels of noise to the recordings; related
results are discussed in Section IV-D. Finally, resource usage
(computing effort and memory footprint) is an important factor
when considering applications for WESNs. Thus, we present
comparative data in this regard in Section IV-E.

In our experiments we have retrieved the evaluated ECG
recordings from the DS1 dataset of the Common Standards for
Electrocardiography (CSE) [19] ECG database. This database
contains challenging samples both of healthy patients and of
subjects presenting a wide range of pathologies (e.g.: bundle
blocks, myocardial infarctions, atrial flutter...).

A. Delineation accuracy

To quantitatively compare the accuracy of the different
solutions, we associated the manually annotated fiducial points
provided by the database distribution (comprising the onset
and end of the P wave, the onset and end of the QRS complex
and the end of the T wave) to the ones that are automatically
retrieved using different filtering/delineation applications.

Table I shows the sensitivity (𝑆𝑒) and positive predictivity
(𝑃+), measured when applying each method. 𝑆𝑒 and 𝑃+ are
defined as

Fig. 5. Relative improvement in sensitivity and positive predictivity of two-
and three- leads delineation with respect to single-lead delineation.
Black = 2 leads, White = 3 leads.

𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝑃+ =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

An automatically delineated point represents a True Positive
(𝑇𝑃 ) if a corresponding manual annotation is present in a
time interval no bigger than 80𝑚𝑠; if such annotation does
not exist, it is instead considered a False Positive (𝐹𝑃 ). If a
manual annotation has no corresponding automatic one in a
80𝑚𝑠 neighborhood, it is counted as a False Negative (𝐹𝑁 )1.

A first observation from Table I is that some fiducial points
are more challenging than others; in particular, the QRS
complex is easier to delineate thanks to the sharpness and
the magnitude of its characteristic shape. All methods exhibit
therefore good predictivity and sensitivity when identifying its
onset and end.

On the other hand, P waves are smaller, and their fiducial
points can be easily masked by background noise. The end of
the T wave is also hard to detect, being usually smooth and
not always precisely defined. In these cases, results among
different methods are very variable with the combination of
spline filtering and MMD transform performing far worse than
the other three combinations.

B. Using single- vs. multi- lead delineation

Figure 5 reports the relative change in sensitivity and
predictivity with respect to single-lead when either two or three
leads are RMS-combined. For conciseness, only data referring

1Sensitivity indicates the ratio of manually annotated points that have a
corresponding automatic annotation. Positive predictivity instead reports the
proportion of automatically reported fiducial points that have a correspondent
manual annotation.
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to P onset and T end is reported, being the most challenging
points.

Even if some outliers are present, in most cases fusing
data from different leads resulted in an increased delineation
quality. While the increase of more than 15% in positive
predictivity achieved for the P onset point in the case of
spline filtering and MMD delineation is somehow biased
by its poor single-lead quality, multi-lead delineation proves
beneficial even when single-lead performance is already high,
as exemplified by the algorithms employing DWT delineation
and morphological filtering, where a predictivity of 93% could
be attained for the T end point using the RMS combination
of three leads.

C. Influence of sampling frequency

Results reported in the previous sections consider a sam-
pling rate of 250 samples/sec, instead of the original 500
samples/sec provided by CSE recordings. As figures in Table
II shows, this downsampling does not degrade the delineation
quality, being the vast majority of the frequency components
of the heart beat characteristic waves included in the interval
]0, 100] Hz [22].

Table II reports sensitivity and predictivity of implementa-
tions tailored to sampling rates of 250 and 500 samples/sec,
respectively. Presented data aggregates sensitivity and positive
predictivity measurements for the five considered fiducial
points and the different leads configurations.

These results show that, surprisingly, an increased sampling
frequency does not necessarily improve delineation perfor-
mance; in fact, results at 500 samples/sec are slightly worse
than those where decimation is applied because a slower
sampling frequency smoothes signals, thus canceling part of
the noise components.

D. Robustness against noise

To further investigate the different implementations, their
performance degradation has been investigated when random
white noise is added to the recordings. Three settings are
considered: (1) noisy single-lead delineation, (2) three-leads
delineation with noise added to a single lead, and (3) three-
leads delineation with noise added to all three leads. The
rationale behind these choices is that noise sources like lead
misplacements or muscular movements do not affect all leads
with the same magnitude, hence real-world multi-lead acqui-
sitions have noise characteristics in-between the two latter
settings.

The data presented in Figure 6 refer to the P onset and T
end fiducial points, plotting the predictivity-sensitivity product
considering a 20 and 10 dB signal-to-noise ratio (SNR).
These results show that the most robust solutions are the
ones based on DWT delineations, particularly when coupled
with morphological filtering. Cubic spline filtering combined
with morphological delineation performed even in this case
the worst, being the least effective, most of all for delineating
the T end fiducial point.

Se P+
Sampling rate 250 500 250 500

Method
MF+MMD 0.81 0.76 0.86 0.84
MF+DWT 0.86 0.78 0.90 0.87
SF+MMD 0.67 0.62 0.77 0.75
SF+DWT 0.84 0.68 0.90 0.84

TABLE II
SENSITIVITY AND POSITIVE PREDICTIVITY OF DELINEATED FIDUCIAL

POINTS (SINGLE-LEAD, 250 AND 500 SAMPLES/SEC). DATA AGGREGATED

ON ALL FIDUCIAL POINTS.

Figure 6 also highlights that multi-lead delineations can re-
sist to higher levels of noise with respect to the corresponding
single-lead versions. This holds even when a robust imple-
mentation is considered and all leads are affected by noise,
with an improvement of as much as 10% in the sensitivity-
predictivity product in the case of morphological filtering and
DWT delineation at the 10 dB SNR level. The robustness of
multi-lead delineation solutions (with respect to single-lead)
is consistent among all methods, strongly indicating that this
feature is beneficial for real-world WESN applications.

Fig. 6. Predictivity-Sensitivity product for P onsets and T ends with different
SNR and different number of leads: Grey = Single lead (1 noisy), Black =
Multi-lead (3 noisy) and White = Multi-lead (1 noisy)

E. Code size and duty cycle evaluation

To assess the real-time performance of the filter-
ing/delineation algorithms illustrated in Sections II and III,
we profiled their execution on the IcyHeart WESNs. Table III
reports the resulting memory footprint of the ECG applications
and their duty cycle during delineation.

The shown data highlights that data fusion of multiple leads
can be performed with a less-than-linear impact on memory
size and computation effort, namely 3-leads delineations being
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Code Size (KB)
# leads MF+MMD MF+DWT SF+MMD SF+DWT

1 38.29 32.42 47.51 30.40
2 42.99 37.13 58.98 40.21
3 46.39 40.47 69.69 49.21

Duty Cycle(Avg / Max)
# leads MF+MMD MF+DWT SF+MMD SF+DWT

1 0.30 / 0.47 0.17 / 0.19 0.35 / 0.47 0.24 / 0.31
2 0.43 / 0.53 0.30 / 0.32 0.42 / 0.55 0.32 / 0.39
3 0.58 / 0.67 0.47 / 0.50 0.50 / 0.65 0.38 / 0.48

TABLE III
MEMORY FOOTPRINT (TOP) AND DUTY CYCLE OF

FILTERING/DELINEATION APPLICATIONS EXECUTED ON THE ICYHEART

PLATFORM (250 SAMPLES/SEC).

on average only 40% larger and 82% slower than single-lead
ones.

Doubling instead the sampling frequency to 500 samples/sec
(which, as stated in Section IV-C has not resulted in higher-
quality delineations), results in an average increase of 33% in
memory size and 125% in runtime. The first aspect is reflected
by the doubling in size of required buffers, while the second
by the linear relation between sampling rate and workload.

Comparing the filtering/delineation application, we clearly
conclude that higher workload and memory footprint do not
always reflect higher performance. In particular, the combi-
nation of morphological filtering and DWT delineation stands
out as the least demanding solution from the computational
viewpoint, while reaching very good overall results for ECG
analysis in real-time.

V. CONCLUSION

WESNs embedding advanced real-time signal processing
can effectively enable unobtrusive monitoring of patients af-
fected by cardiopathies, improving their quality of life and, at
the same time, providing a more effective care.

Real-time ECG delineation, performed directly on “smart”
WESNs, is an important stepping stone in this direction. By
extracting relevant data (fiducial points of ECG waves) out
of acquired cardiac signals, delineation can, on one side,
enable further rapid diagnosis of heart conditions, and on the
other reduce the amount of data to be wirelessly transmitted,
boosting the energy efficiency and ultimately the autonomy of
battery-operated WESNs.

Considering the widely different approaches that have been
proposed in literature to perform real-time ECG delineation,
the choice of a proper implementation is not obvious. In this
paper, we have investigated and compared different techniques
to filter ECG acquisition and delineate them in real time, while
varying design parameters such as the number of acquired
leads and the employed sampling frequency. Reported results
assess the performance of resulting implementations in terms
of accuracy and resistance to noise, as well as code size and
computational complexity.

Taking into account the above-mentioned metrics, exper-
imental evidence shows that combining multiple leads at a
rather low frequency is a better design choice than sampling
a single signal at a higher frequency.

Among the considered combinations of filtering/delineation
chains, the RMS combination of three morphologically filtered
leads followed by DWT delineation, proved to be the most
promising solution for WESN implementations, especially
when noise artifacts are considered. The number of combined
signals can be reduced when targeting platforms with ex-
tremely constrained resources, at the price of a lower accuracy
and (especially) resistance to noise.
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