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Abstract— The Electrocardiogram (ECG) has been established as 
a powerful diagnostic tool in medicine which provides important 
information about the patient’s heart condition. The correct 
identification of the QRS complexes is a fundamental step in 
every automated or semi-automated ECG analysis method. A 
major problem that is often encountered in automatic QRS 
detection is the presence of artifacts in the ECG data, which 
cause considerable alterations to the signal. In this work, the 
objective was to develop a method, based on Time-Frequency 
Analysis (TFA), which would be able to automatically detect and 
remove artifacts in order to increase the reliability of automatic 
QRS detection. The TFA method used for the analysis of the 
ECG data, was based on a time-varying Autoregressive (AR) 
model whose solutions were obtained using Burg’s method. The 
algorithm could detect and remove 95.6% of the artifact areas 
and correctly identify 92.0% of QRS complexes (322 out of 335 
annotated QRS complexes). The proposed method was compared 
with one of the most commonly used methods in ECG analysis, 
which is based on the use of wavelets. The wavelet-based method 
resulted in an accuracy of QRS detection of 65.3% mainly due to 
the large number of false positive detections in the regions of 
artifact. 
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I. INTRODUCTION 
Heart disease is one of the main causes of death in the western 
world and much effort is expended on its diagnosis and 
treatment. Electrocardiography is considered to be one of the 
most powerful diagnostic tools in medicine that is routinely 
used for the assessment of the functionality of the heart. 
Different waves reflect the activity of different areas of the 
heart. A normal electrocardiogram (ECG) consists of a P wave, 
a QRS complex, and a T wave. The P wave is caused by 
electric currents produced by the depolarization of the atria 
before their contraction, while the QRS complex is caused by 
electric currents produced by the depolarization of the 
ventricles prior to their contraction, during the extending of 
the depolarization in the ventricular myocardium. The 
detection of the QRS complex is the crucial first step in every 
automated algorithm for ECG analysis. Due to their 
characteristic shape, the QRS complexes serve as the 
reference point for automated heart rate monitoring and as the 
starting point for further evaluation [1]. 

Numerous approaches have been proposed for 
automatically finding the QRS complexes in as ECG [2]. Such 
algorithms include artificial neural networks [3-6] and genetic 
algorithms [2]. Other approaches included signal derivatives, 

for detection of the steep slope of the QRS complex, [7-11], 
cross-correlation methods, where an initial template was 
aligned to the current ECG signal [4,5], and syntactic 
approaches, where the ECG signal was represented as a 
piecewise linear approximation and was analyzed using 
syntactic rules. The wavelet transform method is currently 
considered to be a state-of-the-art method for automatic ECG 
analysis and QRS detection [12-16]. Almost all of the 
proposed algorithms so far, share a common algorithmic 
structure, that is, a preprocessing stage, including filtering, a 
feature extraction stage, and a decision stage in which peak 
detection and decision logic are included [2,17-19]. 
 
Time-Frequency Analysis 
Many methods of signal processing assume stationary signals. 
However, most biological processes are, in general, non-
stationary, that is, they dynamically change over time [20, 21].  
In such cases, analyzing the signal in the time or frequency 
domain separately might not be so comprehensive. Time-
Frequency Analysis (TFA) effectively provides a description 
of the spectral content as a function of time [22]. Time–
Frequency Representations (TFRs) are two-dimensional (2D) 
functions, which describe the signal temporally and spectrally 
and contains both the time variations and frequency bands 
which define the signal.  
 

II. DATA 
The ECG data used for the development and testing of the 
algorithm was taken from the MIMIC II database. The 
MIMIC II database consists of over 25 thousands intensive 
care unit (ICU) patient recordings of physiologic and vital 
signs, captured in real-time, and comprehensive clinical data 
obtained from hospital records. The ECG waveforms were 
sampled at 125Hz and they typically lasted over 20 hours each 
[23]. A set of 45 ECG segments was chosen randomly from 
eight different MIMIC II patients. Each segment lasted from 5 
to 10 seconds and contained normal and abnormal beats as 
well as artifacts (Fig. 1) which were manually annotated. 
Accurate annotation was a critical part of the evaluation of the 
results of the developed algorithm. Twenty of the data 
segments contained ECG beats as well as various types of 
artifacts of different durations. Another 20 segments contained 
only normal QRS complexes and the remaining 5 contained 
both normal and abnormal beats. 
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Figure 1. (A) Normal ECG waveform. (B) Abnormal E
5seconds. (C) Artifact between 3 and 3.5 seconds. (T
the start and end point of the artifact area.) 
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V. RESULTS 

A. Artifact Hypothesis Testing Results 
The “Artifact Hypothesis Testing” algorithm was used to 
decide whether the signal under consideration contained 
artifact or not. Based on this decision, the signal was classified 
as Artifact or Normal and was further processed accordingly. 
Hence, this was a very important step for achieving improved 
accuracy of QRS detection.  The correct classification rate 
was 95.56 %. 

 
Table 1 shows the results of this algorithm on 45 ECG 
segments of which 20 contained artifacts. The correct 
classification rate was 95.56 %. 

 
TABLE 1. RESULTS OF THE CLASSIFICATION OF THE SIGNALS INTO THE 

CLASSES ARTIFACT AND NORMAL. 

  ESTIMATED 

  Artifact Normal Total 

ACTUAL 

Artifact 18 2 20 

Normal 0 25 25 

Total 18 27 45 

 
B. Artifact Detection and Removal Results 
The “Artifact Detection and Removal” algorithm was applied 
to signals that were classified, during the previous step, as 
artifact-containing. In order to evaluate the performance of the 
algorithm, its results were compared to the manually 
annotated data. If a point was classified as artifact and was in 
the actual artifact area was considered a True Positive, 
otherwise it was considered a False Positive. Similarly, True 
Negatives and False Negatives were calculated from points 
classified as not artifact. The overall accuracy of the artifact 
detection algorithm, after testing on the 18 ECG signals that 
were identified as artifact-containing in the previous step was 
95.60 % as shown in Table 2. 
 

TABLE 2. RESULTS OF ARTIFACT DETECTION ALGORITHM  

  ESTIMATED 

  Artifact Not Artifact 

ACTUAL 
Artifact 29.89% 1.66% 

Not Artifact 2.74% 65.71% 

 

C. QRS complex Detection Results 

QRS detection is the last step of the proposed algorithm. The 
algorithm was applied to all 45 ECG segments which 
contained both normal and abnormal beats. Ideally, both 
should be recognized as QRS complexes. The performance of 
this portion of the algorithm is presented in Table 3. The 
correct classification of QRS complexes of artifact free signals 

is an impressive 100 % (173 beats all correctly identified.) 
The performance degrades for ECG signals containing either 
artifact or abnormal beats. 

TABLE 3. RESULTS OF QRS COMPLEX DETECTION. 

 True 
Positive 

False 
Negative 

False 
Positive 

% Correct 
Classification 

Segments with 
normal beats 173 0 0 100% 

Segments with 
artifact 113 6 13 85% 

Segments with 
abnormal beats 36 7 2 80% 

Overall 322 13 15 92% 
 

VI. DISCUSSION  
Given the results presented in the previous section, it is 
evident that the proposed algorithm is very successful in QRS 
detection. The proposed algorithm yields an overall score of 
92% correct classification. Particularly, if the signal contains 
only normal QRS complexes the QRS complexes are 100% 
correctly classified although the performance is poorer for 
signals with artifacts and abnormal beats (85% and 80% 
respectively). These results are significantly more accurate 
than those achieved using a wavelet-based QRS detection 
algorithm. When applied to the same data, the overall 
accuracy of such an algorithm is only 65.3 % (96.2 % for 
segments with normal beats and no artifacts, 38.4 % for 
segments with artifacts, and 49.5 % for segments with 
abnormal beats.) It is obvious that the results are significantly 
affected by the presence of artifacts an issue alleviated to a 
large extend by the artifact detection and removal algorithm 
proposed here.  

The performance of the proposed algorithm is significantly 
improved because of its artifact testing, detection, and 
removal features. The segments of ECG signals which did not 
contain artifact were all classified correctly as did most of the 
artifact-containing ECGs. However, signals with missing data 
artifact or saturations were misclassified as clean. Although 
this did not affect the QRS detection significantly, this 
limitation can be alleviated by detecting and removing these 
artifacts in the time domain.  

Artifact Detection is an important step in minimizing the 
False Positives of QRS detection in the case of artifact 
containing signals. However, the artifact area has to be 
detected as accurately as possible in order to not only avoid 
false positives (artifact being detected as a QRS complex) but 
to limit false negatives (normal QRS being removed as artifact) 
as well. This can be achieved by minimizing the difference 
between the detected edges and those of the actual artifact 
area. This problem requires appropriate adjustments of the 
parameters of the algorithm. 

For the results of this study to be generalized, a much larger 
data set is needed. In that way there will be a much larger and 
more varied number of cases so that the statistical conclusions 
can be drawn safely. An important parameter that could 
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possibly affect the results is the accuracy of the manual 
annotations. In that case, more than one annotators should be 
used to validate the annotations between them. 

 

VII. CONCLUSIONS 
In conclusion, a method based on Time-Frequency Analysis 
was developed in order to automatically analyze ECG data. 
This method includes:  

a. Determining the presence of artifact in the signal. 
b. Detecting the artifact area and removing the artifact. 
c. Detecting the QRS complexes of both normal and 

abnormal beats. 
The proposed method yields 92% correct QRS detection. 

The improved performance is a result of the detection and 
removal of ~ 96% of the artifact, when it exists in the signal, 
thus avoiding the majority of possible false detections. To our 
knowledge, this is the first case where artifact detection and 
rejection in ECG signals have been so successfully 
implemented. 

In the future this work could be extended in order to also 
detect the P and T waves, which provide additional 
information about specific functions of the heart. In addition, 
successful detection and classification of the various types of 
abnormal beats could also be performed using TFA features. 
When these functionalities are fully implemented will result in 
an ECG-based, accurate, automated, diagnostic tool for 
various diseases of the cardiovascular system. 
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