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Abstract—The study of electrical brain activity (EEG) during
anesthesia has received much attention over recent years. This
can be attributed to the fact that such study has vast clinical
and research implications. In this work we study how the
linear temporal dynamics of EEG activity are affected by the
administration of anesthetic agents. The measure of lagged
auto-correlation (LAC) is applied to the EEG activity of 10
patients undergoing routine surgery and the evolution of the
LAC features is tracked during transitions between wakefulness /
unconsciousness. We report a reversible and widespread increase
in LAC during anesthesia, with decreased variability compared
to wakefulness. This corresponds to a less complex EEG activity
during anesthesia as a result of anesthetic administration and
suggests the future utilization of LAC as a feature for discrimi-
nating between wakefulness and anesthesia.

Index Terms—electroencephalogram, temporal dynamics,
lagged auto-correlation, anesthesia, awareness.

I. INTRODUCTION

Monitoring the electrical brain activity (electroence-
phalogram, EEG) during anesthesia has received great at-
tention in the recent years. Modern anesthesia involves the
administration of different drugs to achieve the desired compo-
nents of unconsciousness, amnesia, analgesia and immobility
[1]. The multi-component nature of anesthesia complicates
the work of anesthetists, who rely on experience and broad
guidelines for administering this chemical cocktail to the
patients. As a result, the phenomenon of awareness during
anesthesia could arise from incorrect dosage of anesthetics,
or other factors, such as equipment failure [2]. Awareness
could be prevented via the use of specialized equipment that
monitors the depth of hypnosis.

The anesthetic-induced measurable changes in the EEG
activity can provide indications as to the patient state of
hypnosis during surgery. Thus, the EEG has come to be
an important tool in clinical applications and commercially
available monitors, such as the BIS [3], are being introduced
for routine patient monitoring during surgery. At the simplest
level these monitors use the loss of high frequencies and shift
to low frequencies observed during anesthesia as a measure of
anesthetic drug action. Given that current monitoring methods
suffer from robustness issues (e.g. see [4]), the need for more
precise, simpler and physiologically-based methods has never
been higher.

In addition to the methods utlized in monitoring devices
a number of other methods have been applied to study the
anesthetic-induced EEG changes. The applied methods look

at different properties of the EEG signals, such as its time-
frequency content, its complexity and its information-based
content (for some examples see [5]–[9] and references within).
In this work we investigate whether information contained
in the temporal dynamics of EEG activity could provide
necessary and sufficient information to discriminate between
wakefulness and anesthesia. A related study by Julitta et al.
investigates the use of non-linear temporal dynamics, mea-
sured through mutual information, of the frontal EEG activity
(3 electrodes) as a measure of anesthetic depth [10]. Here, we
study whether such information can be extracted with linear
methods instead. That is, we study how the administration of
anesthetics affects the linear temporal dynamics of the EEG
activity as measured through lagged auto-correlation (LAC).
If LAC features successfully capture changes between wake-
fulness / anesthesia, then this is advantageous over the more
complex method of mutual information, whose accurate esti-
mation requires large data segments and depends on estimating
the underlying probability distribution. More specifically, in
this work the lagged auto-correlation is estimated from whole-
head EEG data obtained from 10 patients during surgery and
the evolution of the LAC features during wakefulness and
anesthesia is monitored.

II. METHODS

A. Dataset

The data has been collected as part of a larger study at
Nicosia General Hospital, Cyprus. The study was approved
by the Cyprus National Bioethics Committee and patients
gave written and informed consent for their participation. A
detailed description of the dataset can be found in our previous
studies (see, for example, [9]). In this preliminary study
we re-analyzed a small subset of the data from 10 patients
with mean age (± standard deviation) 38.7 (± 19.0) who
underwent routine general surgery. Anesthesia was induced
by the on-duty anesthetist with a propofol bolus (2-4 mg/kg)
and maintenance was achieved via continuous intravenous
administration of propofol. During surgery other agents, such
as neuromuscular blocking agents and analgesic drugs, were
administered as per surgery requirements. EEG data collection
was performed with the TruScan32 (Deymed Diagnostic, CZ)
using the 10/20 system. Data were sampled at 256 Hz.
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B. Methodology

The evolution of the EEG temporal dynamics was per-
formed with lagged auto-correlation (LAC). Given a time
series, X = [x(1), x(2), ..., x(T )], LAC provides a quantitative
measure of the dependence of current observations of X on
its past observations at a time lag τ :

LAC(X, τ) = C(x(1, ..., T − τ), x(τ, ..., T )) (1)

C is the correlation,

C(X1, X2) =
E[(x1 − µx1

)(x2 − µx2
)]

σx1
σx2

(2)

where µ is the mean and σ is the variance.
Before estimating the LAC features some necessary pre-

processing steps were performed. Firstly, the EEG data were
filtered with a 50-Hz Notch filter (function ‘iirnotch’ in
Matlab R©). This ensured that any line noise contamination
present in the data was removed, as this could have induced
spurious correlations during estimation of the LAC features.
Secondly, the outlier LAC values that corresponded to EEG
windows contaminated with diathermy artifacts were removed
from further analysis. Since diathermy causes sharp drops in
the LAC features during anesthesia (see fig. 1 for an example),
the removal of the outlier values was achieved by applying
a simple threshold function. Thus, any LAC values that fall
below this threshold during anesthesia are removed from
subsequent analysis. The threshold function was empirically
set to 0.95 after visual inspection of the LAC values.

The choice of the delay for estimating the LAC values
was performed after trial and error. The LAC was obtained
for delays τ = 1, 5, 10, 20, 30, 50, 70, 100 and after visually
inspecting the resulting LAC features, the delay of τ = 1
was chosen, as this provided a larger and clearer difference
between the two conditions of wakefulness and anesthesia.

In summary, the proposed methodology consists of the
following steps:

1) Apply a 50-Hz Notch filter to the EEG data to ensure
no spurious correlations arise due to line noise.

2) Segment the continuous EEG data into 4-s windows
(1024 samples) with 75% overlap (sliding window by
1 s, i.e. 256 samples).

3) For each patient and available electrode, estimate the
LAC over all available windows and a time lag = 1
sample (4 ms).

4) Apply a threshold to the LAC values during anesthesia
to remove outlier values caused by diathermy contami-
nation of the EEG signals.

5) For each patient and electrode estimate the mean LAC
and its standard deviation during wakefulness and anes-
thesia.

III. RESULTS AND DISCUSSION

The effect of anesthetic administration on the temporal
dynamics was studied with lagged auto-correlation (LAC).
Figure 1 shows a representative example of LAC features

estimated throughout the entire surgical duration for patient
S1 and electrode F7. Table I summarizes the general trend of
changes in the LAC values observed during wakefulness and
anesthesia for all electrodes. The estimated means indicate a
widespread increase in LAC during anesthesia. Despite the
widespread nature of this increase, this is more prominent
in more anterior and central areas compared to posterior
areas, which display larger LAC values during wakefulness.
This could have implications in a potential utilization of
LAC features for discriminating between wakefulness and
anesthesia regarding the placement of appropriate electrodes.
Table I suggests that electrodes in more anterior positions
could provide an increased ability of discrimination due to
the larger changes in the measured LAC values.

Figure 2 shows an overview of the LAC values estimated
during wakefulness and anesthesia as measured by the stan-
dard deviation of the LAC values. Despite the large inter-
subject variability in the actual LAC values, all subjects exhibit
the same trend: during anesthesia the EEG signal becomes
less complex and more predictable, as indicated by the small
variance of the estimated LAC values. All differences in the
variances of the LAC features for wakefulness and anesthesia
are statistically significant (Levene’s test, α = 0.01).

The increase in LAC during anesthesia implies that anes-
thetics affect the complexity of EEG activity. The lower and
highly variable LAC values observed during wakefulness are
replaced by larger and less variable values during anesthesia.
In addition, the LAC values display smaller variation during
anesthesia than wakefulness. This constitutes the variance (or
standard deviation) of the LAC values as a prime candidate
feature for discrimination between the two conditions.

The implication of the above observations is that anesthetic
administration causes an increase in the similarity of the
EEG signal, which is more prominent during short delays
(here 1 sample, which corresponds to 4ms). This agrees with
evidence in the literature concerning the changes in EEG
complexity during anesthesia (e.g. [3, 4]). Evidence from
recent imaging studies with isoflurane and halothane [5],
sevoflurane [6], midazolam [7] and propofol [8] support a
functional disconnection of the cortex from outside sensory
experience. This disruption of sensory information flow to the
cortex implies that no external input can reach the cortex,
resulting to a hypersynchrony of neuronal activity. Conse-
quently, the similarity of EEG activity increases, while its
complexity decreases. This justifies the observed increase in
LAC values during anesthesia, as these imply an increase in
EEG predictability.

The LAC features provide a simple and intuitive way
of monitoring patient state of hypnosis during surgery. The
information obtained from such features is sufficient such that
no non-linear methods, e.g. mutual information, are necessary.
Utilization of such features in a monitoring device could
include estimation of the LAC features and their variance over
a moving window and discrimination between wakefulness /
anesthesia using an adaptive threshold. For practical reasons
only the minimum number of electrodes at optimum positions
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Fig. 1. Top: Raw LAC values for patient S1 at electrode F7. Vertical lines indicate anesthetic administration for induction (dashed line) and recovery of
consciousness (dotted line). The effect of diathermy contamination on the LAC values is visible as a sharp decrease in the LAC values during anesthesia.
Middle: LAC after removal of outlier LAC values due to diathermy. Bottom: Mean LAC values estimated during wakefulness and anesthesia for patient S1
and all available electrodes (electrode O2 was not available), plotted together with errorbars ( 1 standard deviation).

would be utilized. Figure 2 indicates that it is possible to dis-
criminate between the two states using even a single electrode,
with electrodes at fronto-central locations displaying a larger
difference of variance for the two conditions. Online discrim-
ination could be achieved via an adaptive threshold, updated
based on the estimated variances from previous windows. Such
a threshold would track the changes in variance as the patient
transitions between the two states. Rather than converting the
LAC features to a number from 0-100, the adaptive threshold
and the estimated LAC features would be displayed to the
anesthetist. This takes into account the inter-subject variability
of the LAC features as the anesthetist would be interpreting
the LAC patterns directly rather than rely on interpretation of
a general, dimensionless and subject-independent number.

IV. CONCLUSION

We investigate the evolution of the linear temporal dynam-
ics, as measured through lagged auto-correlation (LAC), of the
EEG during wakefulness and anesthesia. Our findings confirm
that the EEG shifts from more complex patterns observed
during wakefulness to less complex and more predictable
patterns during anesthesia. The variability of the LAC is also
significantly smaller during anesthesia. The LAC features are
good candidates for utilization in a future clinical device for
monitoring patient state of hypnosis during anesthesia.
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TABLE I
MEAN AND STANDARD DEVIATION OF SUBJECT-WISE LAC AT EACH

ELECTRODE

Awake Anesth
Electrodes Mean Stand. Dev. Mean Stand. Dev.

Fp1 0.8459 0.1002 0.9718 0.0052
Fp2 0.8505 0.1141 0.9735 0.0076
F7 0.7753 0.1376 0.9732 0.0043
F3 0.8134 0.1286 0.9675 0.0035
Fz 0.8892 0.0999 0.9701 0.0063
F4 0.8071 0.1213 0.9686 0.0032
F8 0.7610 0.1298 0.9729 0.0043
T3 0.7284 0.1421 0.9751 0.0046
C3 0.8580 0.0864 0.9732 0.0035
Cz 0.9246 0.0395 0.9741 0.0041
C4 0.8767 0.0755 0.9742 0.0040
T4 0.7783 0.1212 0.9754 0.0044
T5 0.8759 0.0691 0.9770 0.0042
P3 0.8968 0.0555 0.9755 0.0044
Pz 0.9290 0.0423 0.9762 0.0041
P4 0.9240 0.0414 0.9763 0.0041
T6 0.9019 0.0474 0.9763 0.0044
O1 0.9288 0.0357 0.9766 0.0042
O2 0.9321 0.0376 0.9764 0.0043
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Fig. 2. Standard deviation of LAC features during wakefulness (light) and anesthesia (dark) for each of the 10 subjects studied (S1-S10).
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