
Calibrated Probabilistic Predictions for Biomedical
Applications

Antonis Lambrou∗†, Harris Papadopoulos∗†‡, Alexander Gammerman†
∗Frederick Research Center, Nicosia, Cyprus
†Computer Learning Research Centre,

Royal Holloway, University of London, UK
{A.Lambrou, A.Gammerman}@cs.rhul.ac.uk
‡Department of Computer Science and

Engineering, Frederick University, Cyprus
{H.Papadopoulos}@frederick.ac.cy

Abstract—Venn Prediction (VP) is a machine learning frame-
work that can be used to develop methods that provide well-
calibrated probabilistic outputs. Unlike other probabilistic meth-
ods, the VP framework guarantees validity under the assumption
that the data are independently and identically distributed (i.i.d.).
Well-calibrated probabilistic outputs are of great importance,
especially in biomedical applications. In this work, we develop
a new Venn Predictor based on the Sequential Minimal Optimi-
sation (SMO) algorithm and we examine its application to two
real-world biomedical problems. We demonstrate in our results
that our method can provide calibrated probabilistic outputs for
predictions without any loss of accuracy. Moreover, we compare
the outputs of our method with the probability outputs of SMO
with logistic regression.

Index Terms—Venn Prediction, Probability outputs,
biomedicine

I. INTRODUCTION

Recent developments in the biomedical research domain
have given rise to many applications in bio-computing sci-
ence, especially in machine learning, where high-dimensional
datasets can be modeled. Nevertheless, most machine learning
methods do not provide probabilistic outputs for their predic-
tions which are very important for this kind of applications.
There are some methods that output probabilities, but these
can sometimes be misleading and unreliable in cases where the
data assumptions are incorrect, or when the task is difficult.

In this work, we propose the use of Venn Prediction for
producing well-calibrated probabilistic predictions for biomed-
ical problems. Venn Predictors (VPs) are machine learning
algorithms that can provide reliable probability estimates,
based on the only assumption that the data are independently
and identically distributed (i.i.d.).

The Venn Prediction framework is an extension to the
Conformal Prediction framework which was introduced in [1].
Conformal Predictors (CPs) provide reliable measures of con-
fidence for their predictions based on the i.i.d. assumption.
Several CPs have been developed based on various algorithms
such as Support Vector Machines [2], Ridge Regression [3],
k-Nearest Neighbours for classification [4] and for regres-
sion [5], Random Forests [6], and Genetic Algorithms [7].
The computational efficiency of CPs has also been greatly

improved using Inductive Conformal Prediction (ICP) [8],
as demonstrated when combined with Ridge Regression [9],
k-Nearest Neighbours [10], and more recently with Neural
Networks [11], [12]. The CP framework has been successfully
applied to medical problems, such as breast cancer diag-
nosis [13], classification of leukaemia subtypes [14], early
detection of ovarian cancer [15], and acute abdominal pain
diagnosis [16].

Unlike CPs which provide confidence measures, VPs output
probabilistic intervals for each classification. The Venn Predic-
tion framework was also introduced in [1] where the interested
reader can find a thorough description. Since then, VPs have
been developed based on k-Nearest Neighbours [17], Nearest
Centroid [18] and Neural Networks [19], [20]. Furthermore, a
VP based on a binary SVM has been developed in [21], where
it has been compared with Platt’s method in the batch setting.
An Inductive Venn Predictor (IVP) has also been introduced
in [22]. In this work, we develop a VP based on the Sequential
Minimal Optimisation (SMO) algorithm, and we apply our
method on two real-world biomedical datasets: The Ecoli
and Dermatology datasets, both available at the University of
California, Irvine (UCI) Machine Learning Repository [28].
We conduct experiments with the SMO algorithm, SMO with
logistic regression that outputs probability estimates, and our
VP. We compare the results of all the algorithms, and we
demonstrate the reliability of the probability estimates that are
given by our method.

The rest of the paper is structured as follows. In section II,
we describe the Venn Prediction framework and give details of
how we have developed a VP based on SMO. In section III, we
provide our experimental results on the Ecoli and Dermatology
datasets. Finally, in section IV, we conclude and outline our
future work.

II. VENN PREDICTION

The Venn Prediction framework provides a way for estimat-
ing valid probabilities based on the i.i.d. assumption. Typically,
we have a training set1 of the form {z1, . . . , zn−1}, where

1The training set is in fact a multiset, as it can contain some examples more
than once.
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each zi ∈ Z is a pair (xi, yi) consisting of the object xi and
its classification yi. For a new object xn, we intend to estimate
its probability of belonging to each class Yj ∈ {Y1, . . . , Yc}.
The Venn Prediction framework assigns each one of the
possible classifications Yj to xn and divides all examples
{(x1, y1), . . . , (xn, Yj)} into a number of categories based on
a taxonomy. A taxonomy is a sequence An, n = 1, . . . , N of
finite measurable partitions of the space Z(n)×Z, where Z(n)

is the set of all multisets of elements of Z of length n. We
will write An({z1, . . . , zn}, zi) for the category of the partition
An that contains ({z1, . . . , zn}, zi). In the next subsection, we
define a taxonomy based on the output of the SMO algorithm.

After partitioning the examples into categories using a
taxonomy, the empirical probability of each classification Yk
in the category τnew that contains (xn, Yj) will be

pYj (Yk) =
|{(x∗, y∗) ∈ τnew : y∗ = Yk}|

|τnew|
. (1)

This is a probability distribution for the class of xn. So after
assigning all possible classifications to xn we get a set of
probability distributions Pn = {pYj : Yj ∈ {Y1, . . . , Yc}} that
compose the multi-probability prediction of the VP. As proved
in [1], these are automatically well calibrated, regardless of the
taxonomy used.

The maximum and minimum probabilities obtained for each
label Yk amongst all distributions {pYj : Yj ∈ {Y1, . . . , Yc}},
define the interval for the probability of the new example
belonging to Yk. We denote these probabilities as U(Yk) and
L(Yk), respectively:

U(Yk) =
c

max
j=1

pYj (Yk) (2)

L(Yk) =
c

min
j=1

pYj (Yk) (3)

The VP outputs the prediction ŷn = Ykbest
, where

kbest = argmax
k=1,...,c

p(k), (4)

and p(k) is the mean of the probabilities obtained for label Yk
amongst all probability distributions. The probability interval
for Ykbest

is [L(Ykbest
), U(Ykbest

)].

A. Venn Predictor with SMO

In this work, we use the Sequential Minimal Optimisation
(SMO) [23] method as the underlying algorithm to divide
examples into categories. We have used the implementation
of the SMO which was developed in WEKA [24]. SMO
efficiently solves the optimisation problem which arises during
the training phase of Support Vector Machines (SVMs). In this
version of SMO, multi-class problems are solved using pair-
wise classification (1-vs-1), and if logistic regression is used,
the logistic models are built using pairwise coupling [25]. The
VP taxonomy is simply based on the classification output of
the SMO algorithm; the taxonomy categorizes the examples
according to the classification given by the SMO. In order
to build the label distributions as described in section II, we

have used the transductive framework, in which for every test
example we assume every possible label of the example and
we add it in the training set. We train the SMO algorithm
several times (one for each label assumption), and we build
the label distributions based on the SMO taxonomy.

III. EXPERIMENTS AND RESULTS

The SMO algorithm was used in our experiments in four
variations: SMO classifier, SMO with Logistic Regression
(SMOL), SMO with Feature Selection (SMO-FS), and SMO
with Logistic Regression and Feature Selection (SMOL-FS).
The FS method that we have used is the Correlation Based
Feature Selection method (CBFS). The Venn Predictor algo-
rithm was also used in four variations: SMO Venn Predictor
(VENN-SMO), SMO Venn Predictor with Logistic Regression
(VENN-SMOL), SMO Venn Predictor with CBFS (VENN-
SMO-FS), and SMO Venn Predictor with Logistic Regression
and CBFS (VENN-SMOL-FS).

We have conducted two sets of experiments: one in the
offline setting and one in the online. In the offline setting,
we have experimented with 10-fold cross validation, and we
show the mean accuracy. For the algorithms which provide
probabilistic outputs we also calculate the Brier Score (BS)
which is defined as:

BS =
1

N

N∑
i=1

c∑
j=1

(f(xij)− oij)2, (5)

where f(xij) is the probabilistic output of the algorithm for
example xi and class j, and oij is set to 1 if example xi
belongs to class j, and 0 otherwise. For VPs, f(xij) is the
mean of the probabilities obtained for class j. Additionally,
we output the mean probability estimate, and for the VPs the
mean probability interval.

In the online experiments we have selected SMOL-FS
and our VENN-SMO-FS algorithms which provided the best
results in the offline setting. The online experiments allow
us to demonstrate the advantages of our VP over the other
methods. In the online setting there is no initial training set. A
test instance xt is predicted by the algorithm and a probability
estimate is given for the prediction. The test instance with
its true label is then added to the training set which grows
every time. In the results of the SMOL-FS algorithm, we graph
the Cumulative Mean Probability (CMP) and the Cumulative
Mean Accuracy (CMA) curves:

CMP (t) =
1

t

t∑
i=1

c
max
j=1

f(xi), (6)

CMA(t) =
1

t

t∑
i=1

Acci, (7)

where t is the number of test examples that have been added to
the training set, and Acci = 1 when the prediction for example
xi is correct and 0 otherwise.

For the VENN-SMO-FS algorithm we graph the Cumulative
Mean Lower Probability (CMLP), the Cumulative Mean Upper
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TABLE I
ATTRIBUTE INFORMATION OF THE ECOLI DATASET.

# Short name Description
1 Sequence Name Accession number for the SWISS-PROT

database
2 mcg McGeoch’s method for signal sequence

recognition.
3 gvh von Heijne’s method for signal sequence

recognition.
4 lip von Heijne’s Signal Peptidase II consensus

sequence score.
5 chg Presence of charge on N-terminus of

predicted lipoproteins.
6 aac score of discriminant analysis of the amino

acid content of outer membrane
and periplasmic proteins.

7 alm1 score of the ALOM membrane spanning
region prediction program.

8 alm2 score of ALOM program after excluding
putative cleavable signal regions from
the sequence.

TABLE II
CLASS DISTRIBUTION OF THE ECOLI DATASET.

Short name Description #
cp cytoplasm 143
im inner membrane without signal sequence 77
pp perisplasm 52
imU inner membrane, uncleavable signal sequence 35
om outer membrane 20
omL outer membrane lipoprotein 5
imL inner membrane lipoprotein 2
imS inner membrane, cleavable signal sequence 2

Probability (CMUP), the Cumulative Mean Central Probability
(CMCP), and the CMA curves:

CMLP (t) =
1

t

t∑
i=1

Li(Ykbest
), (8)

CMUP (t) =
1

t

t∑
i=1

Ui(Ykbest
), (9)

CMCP (t) =
1

t

t∑
i=1

Ui(Ykbest
) + Li(Ykbest

)

2
. (10)

A. Ecoli dataset

The Ecoli dataset contains 336 Ecoli proteins that are
classified into 8 cellular localization sites [26]. In Table I we
list the attributes of each protein, and in Table II we show the
class distribution of the dataset. The mean accuracy achieved
in [26] after a randomized 10-fold cross validation experiment
on the same dataset was 81%.

1) Offline experiments: In Table III we list the accuracies
of the SMO and SMO-FS algorithms with 10 different RBF
spread parameters. The best mean accuracy achieved by both
algorithms is 78.87% with RBF spread parameter set to 9.5.

In Table IV we show the results of the SMOL algorithm
which outputs probability estimates. We show the mean accu-
racy, the Brier Score (BS), and the mean probability estimate
of the algorithm using the best RBF parameter that is shown in

TABLE III
10-FOLD CROSS VALIDATION ACCURACY RESULTS OF THE SMO AND

SMO-FS ALGORITHMS ON THE ECOLI DATASET.

RBF SMO Acc. SMO-FS Acc.
5 77.98% 77.98%

5.5 77.98% 77.98%
6 78.27% 77.98%

6.5 77.98% 77.98%
7 77.68% 77.38%

7.5 78.27% 78.27%
8 78.27% 78.27%

8.5 78.27% 78.27%
9 78.27% 78.57%

9.5 78.87% 78.87%
10 78.57% 78.57%

Table III. Additionally, we include the results of the SMOL-FS
algorithm.

In Table V we show the results of the SMO VPs on the Ecoli
dataset. We show the mean accuracy, Brier Score (BS), the
mean lower probability bound, and the mean upper probability
bound. Remarkably, all VPs have achieved an accuracy of
around 85%, which is significantly higher than the mean
accuracy of the SMO algorithm. Moreover, the BSs of the
VPs are significantly lower than those of the SMOL algorithm,
especially in the case of the VENN-SMO-FS algorithm which
gives a BS of 22.29%, a significant 10% difference than the
worse 35.04% of the SMOL-FS algorithm. This demonstrates
that the probability estimates of the VPs are much nearer to
the real probabilities. From the results, we can also see how
the mean accuracies always fall within the lower and upper
bounds of the VPs.

TABLE IV
10-FOLD CROSS VALIDATION RESULTS OF THE SMOL AND SMOL-FS

ALGORITHMS ON THE ECOLI DATASET.

Method RBF Acc. BS Mean Prob.
SMOL 9.5 77.38% 34.38% 72.01%

SMOL-FS 9.5 77.68% 35.04% 72.08%

2) Online experiments: In Figure 1 we graph the online
results of the SMOL-FS algorithm on the Ecoli dataset. Here
we demonstrate the problem of the SMOL-FS algorithm.
Due to the difficulty of the task, the algorithm was not
able to estimate well calibrated probabilities. As shown in
the graph, the CMA lies at around 80% during the online
experiment, while the probability estimates lie at around 90%.
This difference of about 10% in the results can mislead to
wrong judgment. In Figure 2 we show the online results of

TABLE V
10-FOLD CROSS VALIDATION RESULTS OF THE VENN-SMO,

VENN-SMO-FS, VENN-SMOL, AND VENN-SMOL-FS ALGORITHMS
ON THE ECOLI DATASET.

Method RBF Acc. BS Prob. Interval
VENN-SMO 9.5 86.90% 22.14% 81.08% – 90.59%

VENN-SMO-FS 9.5 86.90% 22.29% 81.04% – 90.49%
VENN-SMOL 9.5 85.42% 33.88% 22.19% – 91.05%

VENN-SMOL-FS 9.5 85.12% 33.88% 22.19% – 91.05%
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our VENN-SMO-FS algorithm. The CMA is shown to fall
within the bounds, and it also tends towards the CMCP curve.
This result is expected and shows that one can rely on these
probability estimates.
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Fig. 1. Online experiment on the Ecoli dataset with the SMOL-FS algorithm.
CMA and CMP curves are shown.
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Fig. 2. Online experiment on the Ecoli dataset with our VENN-SMO-FS
algorithm. CMA, CMLP, CMUP, and CMCP curves are shown.

B. Dermatology dataset

The Dermatology dataset contains 366 instances of patients
with erythemato-squamous diseases [27]. The instances are
classified into 6 diseases. In this work, 8 instances with
missing values have been removed from the dataset. The
reported accuracy in [27] is 96.2% after a 10-fold cross
validation experiment. There are 34 attributes which are not
listed here. The details about the attributes can be found
in [28]. In Table VI we show the class distribution of the
dataset.

TABLE VI
CLASS DISTRIBUTION OF THE DERMATOLOGY DATASET.

Class Description #
1 psoriasis 112
2 seboreic dermatitis 61
3 lichen planus 72
4 pityriasis rosea 49
5 cronic dermatitis 52
6 pityriasis rubra pilaris 20

TABLE VII
10-FOLD CROSS VALIDATION ACCURACY RESULTS OF THE SMO AND

SMO-FS ALGORITHMS ON THE DERMATOLOGY DATASET.

RBF SMO Acc. SMO-FS Acc.
0.01 92.18% 95.81%
0.02 93.30% 96.93%
0.03 93.02% 96.37%
0.04 93.85% 96.93%
0.05 93.02% 96.93%
0.06 91.62% 96.37%
0.07 89.94% 96.37%
0.08 89.11% 96.65%
0.09 86.03% 96.65%
0.10 84.08% 96.37%

1) Offline experiments: In Table VII we list the mean accu-
racy of the SMO and SMO-FS algorithms on the dataset. The
best mean accuracy achieved by SMO is 93.30%, and by the
SMO-FS 96.93%. In Table VIII we include the results of the
SMOL and SMOL-FS algorithms. The SMOL-FS algorithm
has the best mean accuracy of 96.65% and BS 5.75%. In
Table IX we show the results of the VPs on the Dermatology
dataset. The best mean accuracy is achieved by the VENN-
SMO-FS algorithm which is 96.93% and has a BS of 5.23%
(slightly lower than the BS of SMOL-FS).

TABLE VIII
10-FOLD CROSS VALIDATION RESULTS OF THE SMOL AND SMOL-FS

ALGORITHMS ON THE DERMATOLOGY DATASET.

Method RBF Acc. BS Mean Prob.
SMOL 0.02 90.50% 14.78% 89.26%

SMOL-FS 0.02 96.65% 5.75% 95.15%

2) Online experiments: In Figure 3 we show the online
results of the SMOL-FS algorithm on the Dermatology dataset.
In this case the SMOL-FS algorithm has perfomed quite well
due to the fact that the dataset is easier for learning with
the SMO algorithm. The CMA and CMP fall around 90%.
Nevertheless, the probability bound given by the SMOL-FS
algorithm can not always be trusted, as it was shown in
Figure 1. In Figure 4 we show the online results of the VENN-

TABLE IX
10-FOLD CROSS VALIDATION RESULTS OF THE VENN-SMO,

VENN-SMO-FS, VENN-SMOL, AND VENN-SMOL-FS ALGORITHMS
ON THE DERMATOLOGY DATASET.

Method RBF Acc. BS Prob. Interval
VENN-SMO 0.02 93.30% 11.39% 78.75% – 97.82%

VENN-SMO-FS 0.02 96.93% 5.23% 93.35% – 98.37%
VENN-SMOL 0.02 90.78% 18.33% 50.44% – 96.71%

VENN-SMOL-FS 0.02 96.09% 7.98% 79.46% – 98.37%
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SMO-FS algorithm on the Dermatology dataset. As it was
stated previously, the CMA, CMLP, CMUP, and CMCP curves
are shown. The accuracy is again well within the bounds as
expected, and tends near the CMCP curve. Thus, the reliability
of the probability estimates given by the Venn Predictor is
demonstrated in the graph.
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Fig. 3. Online experiment on the Dermatology dataset with the SMOL-FS
algorithm. CMA and CMP curves are shown.
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Fig. 4. Online experiment on the Dermatology dataset with out VENN-
SMO-FS algorithm. CMA, CMLP, CMUP, and CMCP curves are shown.

IV. CONCLUSION

In this work, we have developed a VP for multi-class
datasets based on the SMO algorithm. We have demonstrated
the reliability of the probability estimates of Venn Predictors,
and we have applied our method on two real-world biomedical
problems. Unlike other probabilistic methods, Venn Predictors
guarantee, under the assumption that the data are indepen-
dently and identically distributed (i.i.d.), that the probability
bounds will be well-calibrated.

In the future, our aim is to apply the proposed approach
on biomedical problems where probabilistic predictions are of
great importance. Furthermore, we aim to develop taxonomies
that will increase the accuracy of our method.
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