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Abstract—With the availability of large amounts of DNA data,
exact matching of nucleotide sequences has become an important
application in modern computational biology and in meta-
genomics. In this paper we present an efficient method based
on multiple hashing functions which improves the performance
of existing string matching algorithms when used for searching
DNA sequences. From our experimental results it turns out that
the new proposed technique leads to algorithms which are up to 8
times faster than the best algorithm known for matching multiple
patterns. It turns out also that the gain in performances is larger
when searching for larger sets. Thus, considering the fact that
the number of reads produced by next generation sequencing
equipments is ever growing, the new technique serves a good
basis for massive multiple long pattern search applications.

Index Terms—string matching, DNA searching, text processing,
biological sequences, hashing algorithms.

I. INTRODUCTION

In molecular biology, nucleotide sequences are the funda-
mental information for each species and a comparison between
such sequences is an interesting and basic problem. Generally
biological information is stored in strings of nucleic acids
(DNA, RNA) or amino acids (proteins). With the availability of
large amounts of DNA data, matching of nucleotide sequences
has become an important application and there is an increasing
demand for fast computer methods for analysis and data
retrieval [12]. There are various kinds of comparison tools
which provide aligning and approximate matching (see for
instance [15], [12]), however most of them are based on exact
matching in order to speed up the process. Moreover exact
string matching is widely used in computational biology for
a variety of other tasks. Thus the need for fast matching
algorithms on DNA sequences.

In this article we consider the problem of searching
for all exact occurrences of a set of r patterns P =
{p0, p1, . . . , pr−1} in a text t, of length n. We focus on the
case where the text t and the patterns pi are DNA sequences
over a finite alphabet Σ = {a, c,g, t} of constant size σ = 4.
We are interested here in the problem where the set of patterns
is given first and can then be searched in various texts, thus a
preprocessing phase is allowed on the patterns. This problem is
referred in literature as the multiple string matching problem.

In particular we present an improvement of a filtering
method based on hashing and q-grams which provides good

performances in practical cases for matching DNA sequences.
This kind of solutions uses a hashing function in order to locate
candidate occurrences along the text and, whenever a candidate
occurrence has been found, performs a naive comparison in
order to check if one of the patterns really occurs. The new
method we propose is based on the combination of multiple
hash functions with the aim of improving the filtering phase,
i.e. to reduce the number of candidate occurrences found by
the algorithm. We use the technique for the generalization of
the well known Wu-Manber algorithm [16] and conduct an
experimental evaluation to show the efficiency of the method.

Before entering into details, we need a bit of notations and
terminology. A string p of length m > 0 is represented as a
finite array p[0 . .m−1] of characters from a finite alphabet Σ
of constant size σ. By p[i] we denote the (i+ 1)-th character
of p, for 0 ≤ i < m. Likewise, by p[i . . j] we denote the
substring of p contained between the (i+1)-th and the (j+1)-
th characters of p, for 0 ≤ i ≤ j < m. A substring of the
form p[0 . . i] is called a prefix of p and a substring of the
form p[i . .m− 1] is called a suffix of p for 0 6 i 6 m− 1.

Given a set of r patterns P = {p0, p1, . . . , pr−1} we
indicate with symbol mi the length of the pattern pi, for
0 ≤ i < r, while the length of the shortest pattern is denoted
by m. Finally, we recall the notation of some bitwise infix
operators on computer words, namely the bitwise and “&”
and the left shift “�” operator (shifts to the left its first
argument by a number of bits equal to its second argument).

II. PREVIOUS RESULTS

The problem of searching DNA sequences has been exten-
sively studied in the last years and its importance in modern
biology has led to produce much works. In the field of single
string matching, Kalsi et al. [9] performed an experimental
comparison of the most efficient algorithms for searching
biological sequences. In addition in [6], [7] Faro and Lecroq
presented an extensive evaluation of (almost) all existing exact
string matching algorithms under various conditions, including
alphabet of four characters and DNA sequences. Navarro
and Raffinot presented a comparison [13] of all matching
algorithms on biological sequences, including multiple pattern
matching algorithms. More recently, Kouzinopoulos and Mar-
garitis conducted another experimental comparison [11] taking
into account the most recent solutions.
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Basically a string matching algorithm uses a window to scan
the text. The size of this window is equal to the minimal length
of a pattern in the set of patterns. It first aligns the left ends
of the window and the text. Then it checks if any pattern in
the set occurs in the window (this specific work is called an
attempt) and then shifts the window to the right. It repeats the
same procedure again until the right end of the window goes
beyond the right end of the text.

The best algorithms for searching DNA sequences are based
on filtering methods. Specifically, instead of checking at each
position of the text if each pattern in the set occurs, it seems
to be more efficient to filter text positions and check only if
the contents of the window looks like any pattern in the set.
When a resemblance has been detected a naive check of the
occurrence is performed. In order to detect the resemblance
between the pattern and the text window efficient algorithms
use bit-parallelism or character comparisons. Both techniques
can be improved by using condensed alphabets and hashing.

In particular each pattern p of the set is arranged using
a condensed alphabet. In such a representation groups of q
adjacent characters of the pattern are condensed in a single
character by using a suitable hash function h : Σq →
{0, . . . ,MAX}, for a constant value MAX. In practice, the value
of q varies with m and the size of the alphabet and the value
of the constant MAX varies with the memory space available. 1

Thus a pattern p of length m translates in a condensed pattern
p(q) of length m− q + 1 where p(q)[i] = h(p[i . . i+ q − 1]),
for 0 ≤ i ≤ m − q. The hashing method adopted in
standard implementations of condensed alphabets is based on
a shift-and-addition procedure. Specifically, if x ∈ Σq , with
x = x[0 . . q − 1], then h(x) can be efficiently computed by

h(x) =

q−1∑
i=0

((x[i] & M)� k(q − i− 1)) (1)

where k is a constant and M is a bit-mask both dependent
on q. In practice k is set to bω/qc and M is set to 0ω−k1k,
where ω is the size of the register used for hashing q-grams.
Such computation turns out to be particularly effective when
searching on DNA sequences. The DNA alphabet is formed
by the four characters {a, c, g, t}, whose ASCII codes are
{01000001, 01000011, 01000111, 01010100}. Using k = 3
and M = 00000111 leads to a perfect hashing. However for
larger alphabets or when q is greater than 5 only a resemblance
can be used.

The bit-parallelism technique [1] takes advantage of the
intrinsic parallelism of the bit operations inside a computer
word, allowing to cut down the number of operations that an
algorithm performs by a factor up to ω, where ω is the number
of bits in a computer word. This technique is particularly
suitable for simulating non-deterministic automata for a single
pattern [1] and for multiple patterns [2], [3]. The Multiple
Backward Nondeterministic DAWG Matching algorithm [13]
(MBNDM) is included in the MPScan tool [15] and was

1In our implementation we use a value of MAX equal to 216 and use a
16-bit register for each hash value.

proved to be the most efficient bit-parallel algorithm for
searching DNA sequences in most practical cases. It simulates
the suffix automaton of a sequence of classes of characters
obtained by superimposing all the patterns in the set. During
each attempt the window of the text is scanned from right to
left, and when a candidate occurrence is found all the patterns
beginning with the first condensed character of the window
are checked.

In the field of string matching in biological sequences
comparisons of characters provides a simple and efficient
method to obtain a sub-linear number of character comparisons
in most practical situations. The most efficient result using this
approach was presented by Wu and Manber (WM) in [16]
for the multiple pattern matching problem. Their algorithm
is a generalization of the Boyer-Moore-Horspool algorithm
[8] to the multiple pattern cases using condensed alphabets.
The idea is to consider groups of q adjacent characters as a
single condensed character. Then during the searching phase
the algorithms search for candidate occurrences by querying
if the rightmost condensed character of the current window of
the text appears as the rightmost condensed character of any
pattern in the set. In such a case a naive verification is run
for each pattern which satisfies the query, otherwise a shift is
performed and the next window is processed. Both queries and
shifts are computed using a precomputed table which stores the
positions of all condensed characters appearing in the patterns.

Both the MBNDM and the WM algorithms just use con-
densed alphabets with values q = 5 and k = 3, and turn out
to be particularly effective in practice.

Efficient solutions have been also designed for searching on
packed DNA sequences [14], [10], [5]. However in this paper
we do not take into account this type of solutions since they
require a different type of data representation.

III. A MULTIPLE HASHING SOLUTION

When searching for longer patterns and/or larger sets of
patterns it is always convenient to use a filtration method
which better localize candidate occurrences. This generally
translates in involving larger q-grams. In this context the value
of q represents a trade-off between the computational time
required for computing the q-grams for each window of the
text and the computational time needed for checking false
positive candidate occurrences. The larger is the value of q,
the more time is needed to compute each q-gram. On the other
hand, the larger is the value of q, the smaller is the number
of false positive the algorithm finds along the text. A similar
reasoning can be followed for the value of k involved in the
computation of the hash value given in (1). Given a value of q,
the larger is the value of k, the smaller is the number of false
positive. However the values of q and k strongly depend on
the available memory. Practically it is reasonable to consider
the hash values computed on 32 (or 64) bits and each key
(a q-gram) computed on 8 (or 16) bits. This translates in an
extension of the alphabet’s dimension up to 65, 536 different
values. The consequence is that larger values of k implies
smaller values of q, and the opposite. For instance, using 16
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q : k 8 16 32 64 128

3 : 5 167 660 167 714 167 785 167 829 168 791
4 : 4 44.6 184 44.6 210 44.5 225 44.6 231 44.6 225
6 : 2 33.7 146 33.6 155 33.6 166 33.7 170 33.7 169
8 : 2 5.10 47.3 4.97 33.2 4.93 34.3 4.92 37.8 4.92 35.6
10 : 1 119 507 119 539 119 559 119 548
12 : 1 50.3 220 49.6 235 49.6 239 49.8 228
14 : 1 21.4 101 20.6 102 20.4 104 20.3 100
16 : 1 9.15 57.2 8.61 44.2 8.00 43.6 7.68 41.2

TABLE I
COMPARISON OF STANDARD IMPLEMENTATIONS OF THE WM(q)

ALGORITHM WHILE SEARCHING 10, 000 PATTERNS ON A GENOME TEXT.
FOR EACH LENGTH OF THE PATTERN WE PRESENT (ON THE LEFT) THE

NUMBER OF NAIVE VERIFICATIONS PERFORMED FOR EACH TEXT POSITION
AND (ON THE RIGHT) THE RUNNING TIMES IN HUNDREDTHS OF SECONDS.

bits for representing a q-gram and 3 bits for each text character,
the value of q is up to 5.

Table I shows the number of naive verifications and the
corresponding running times of the standard implementations
of the WM algorithm using different values of q. For each
variant the value of k used for computing the hash value is
depicted (the details of the settings are given in Section IV).

First of all notice that the increasing in the value of q
(and the corresponding decreasing of k) strongly affects the
number of verifications performed during the searching phase.
For instance WM(8) uses a value k = 2 and performs
approximately 5 verifications for each text position while. On
the other hand WM(10) decreases the value of k to 1 but
increases the number of verifications of almost 20 times.

Notice also that the number of naive verifications strongly
influence the corresponding running times. However the run-
ning times is also affected by the time needed for computing
the condensed character, i.e. by the value of q. For instance
while the number of verifications from WM(6) to WM(8)
reduces of almost 6 times, the running times between the same
variants reduces only of approximately 3 times.

A. The basic idea

Since extending the number of bits used for representing a
q-gram is time and space consuming, we propose an alternative
solution based on a multiple hashing approach. The idea is
straightforward but effective and consists of using multiple
hash functions in order to reduce the number of naive verifi-
cations and/or to extend the portion of the window involved
in the filtration phase.

Our solution reaches this goal without increasing the re-
quired memory and the computational time for preprocessing
the set of patterns. We propose to use γ different hash
functions (or γ different copies of the same hash function)
to index different consecutive q-grams in the text. Then a
fingerprint of all q-grams is obtained by mixing their hash
values through an appropriate function. Specifically, given two
constant values q > 0 and γ > 0, and a string x of length
m ≥ qγ, we indicate with symbol gx(i, q) the i-th q-gram
of x (proceeding from right to left). More formally we have
gx(i, q) = x[m − iq . .m − 1 − (i − 1)q] for 0 < i ≤ γ.

Moreover an auxiliary function mix : Nγ → N is defined as

mix(a1, a2, . . . , aγ) =

γ∑
i=1

(ai � (γ − i))

where ai ∈ N for all 0 < i ≤ γ. Roughly speaking the mix
function is used for combining γ different hash values into a
single hash value.

In this context a candidate occurrence is located when all
q-grams of the current window of the text resemble their
counterpart q-grams in any pattern in the set P . In particular,
given two strings x and y we say that x resembles y if

mix
(
gx(1, q), gx(2, q), . . . , gx(γ, q)

)
=

= mix
(
gy(1, q), gy(2, q), . . . , gy(γ, q)

)
.

Our proposal naturally arises from the observation that in
most practical cases to use two or three combined q-grams
turns out to be more convenient than using a single (2q)- or
(3q)-gram, even if, due to the use of the mix function for
combining the γ different q-grams in a single hash value, the
number of candidate occurrences slightly increases. Experi-
mental results presented in Section IV confirm our assumption.

B. The algorithm

In this section we briefly describe the preprocessing and
the searching phase of the algorithm. Figure 1 shows the
pseudocode of the multiple pattern matching algorithm based
on γ = 2 hash functions and q-grams with q = 3.

The preprocessing phase consists in computing γ different
shift values for all possible strings of length q. In particu-
lar every substring x ∈ Σq is hashed into a value, h(x),
which is used to index the shift value in γ shift vectors,
sh1, sh2, . . . , shγ , respectively, all of size MAX. Specifically

shi[c] = min
({
m− iq + 1

}
∪ {` ≤ m− iq | pj ∈ P and

hi(pj [m− 1− ` . .m− 2− `+ q]) = c}
)

for 1 ≤ i ≤ γ, 0 ≤ c <MAX and where we recall that m
denotes the length of the shortest pattern in P . An additional
data structure is maintained in order to collect the set of
patterns which resemble with a specific set of q-grams. In
particular a vector F of dimension MAX is defined as

F [u] = {p ∈ P | mix (gp(1, q), gp(2, q), . . . , gp(γ, q)) = u}

for 0 ≤ u < MAX.
The searching phase of the algorithm is based on a standard

sliding window mechanism. Each attempt (lines 5-13) consists
in reading the rightmost γ substrings of length q of the current
window of the text, i.e. si = gp(1, q) for 0 < i ≤ γ. Then, if
shi[h(si)] > 0, for some 0 < i ≤ γ, then an advancement of
the shift is applied (lines 9 and 13).

An optimal shift advancement should be computed as the
max{shi[h(si)] | 0 < i ≤ γ}, however this solution is
computationally costly and time consuming. A more efficient
solution in practice consists in performing iteratively γ blind
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HASH3(s, j)
1. h← s[j]&7
2. h← (h� 3) + s[j − 1]&7
3. h← (h� 3) + s[j − 2]&7
4. return h

PREPROCESSING(p,m, q)
1. for i← 0 to MAX − 1 do
2. F [i]← null
3. sh1[i]← m− q + 1
4. sh2[i]← m− 2q + 1
5. for i← 0 to r − 1 do
6. for j ← 2 to m− 1 do
7. h1 ← HASH3(pi, j)

10. sh1[h1]← min{sh1[h1],m− 1− j}
11. for j ← 2 to m− 1− q do
12. h2 ← HASH3(pi, j − 3)
15. sh2[h2]← min{sh2[h2],m− 1− j}
16. h← (h1 � 1) + h2

17. F [h]← F [h] ∪ {i}
18. return F

MULTIPLEHASHING(P, r,m, t, n, q)
1. F ← Preprocessing(p,m, q)
2. t← t.p0
3. j ← m− 1
4. while (j < n) do
5. do
6. h1 ← HASH3(t, j − 3)
9. j ← j + sh1[h1]

10. h2 ← HASH3(t, j − 3)
13. j ← j + sh2[h2]
14. while (sh1[h1] > 0 or sh2[h2] > 0)
15. if j < n then
16. h← (h1 � 1) + h2

17. for each i ∈ F [h] do
18. if pi = t[j −m+ 1 . . j −m+mi]
19. then output(j −m+ 1, i)
20. j ← j + 1

Fig. 1. The Multiple hashing algorithms (using two hash functions and
3-grams) for multiple pattern matching.

shifts of value shi[h(si)] respectively and to stop only when
all advancements turn out to be non-effective (test at line 14).

Observe that the shift advancement shi+1[h(si+1)] is com-
puted on the new text window aligned after the previous shift
shi[h(si)]. Otherwise, when shi[h(si)] = 0 for all 0 < i ≤ γ
the patterns in the set F [mix(h(s1), h(s2), . . . , h(sγ)] are
examined one by one and naively compared with the current
window of the text (lines 17-19). Then an advancement of
length 1 is applied (line 20). In addition a copy of the pattern
p0 is attached at the end of the text as a sentinel (line 2) to
avoid the current window to pass the right end of the text.

The preprocessing phase of the algorithm requiresO(MAX+
r)-space and O(MAX+rmqγ)-time while the searching phase
has an O(m′n) worst case time complexity, where m′ is the
sum of all patterns lengths in the set P .

IV. EXPERIMENTAL RESULTS

In this section we present experimental evaluations in order
to understand the performances of the newly presented algo-
rithm and to compare it against the best algorithm known in
literature for multiple pattern matching on DNA sequences.

In particular we tested the MBNDM algorithm used in MP-
Scan [15], the WM algorithm [16] and its variants, WM(q, γ),
using q-grams and γ hash functions. We use values of q
ranging from 2 to 8 and values of γ ranging from 1 to 3.

We implemented the WM variants by using the formula
given in (1) and set k to bω/qc while M has been set to
0ω−k1k, where ω = 32 is the size of the register used for
hashing q-grams. All algorithms have been implemented in
the C programming language and have been compiled with
the GNU C Compiler, using the optimization options -O3. The
experiments were executed locally on an MacBook Pro with
4 Cores, a 2 GHz Intel Core i7 processor, 4 GB RAM 1333
MHz DDR3, 256 KB of L2 Cache and 6 MB of L3 Cache.
Algorithms have been compared in terms of running times,
including any preprocessing time, measured with a hardware
cycle counter, available on modern CPUs.

For the evaluation we use the genome sequence of
4, 638, 690 base pairs of Escherichia coli. For the tests on
multiple pattern matching we have generated sets of 100, 1000
and 10, 000 patterns of fixed length m. In all cases the patterns
were randomly extracted from the text and the value m was
made ranging over the values 8, 16, 32, 64 and 128. For each
case we reported the mean over the running times of 200 runs.

Tables II, III and IV show experimental results on multiple
pattern matching (sets of 100, 1000 and 10, 000 patterns,
respectively). Running times are expressed in thousands of
seconds. We report the mean of the overall running times
(columns with gray background) and the means of the pre-
processing and searching times (just on the right). Best times
have been boldfaced and underlined. The best searching times
among each group of WM(q, γ) variants, with 1 ≤ h ≤ 3,
have been simply boldfaced.

From our experimental results it turns out that the MBNDM
algorithm is the best solution for short patterns and small sets,
i.e. m ≤ 16 and r ≤ 1000. When the length of the patterns
increases the best running times are obtained by the WM(q, γ)
algorithms using condensed characters on 8-grams. For small
sets of patterns (r = 100) the WM(8, 1) algorithm obtains the
best results, while for larger sets of pattern the WM(8, 2) and
the WM(8, 3) algorithms obtain the best results.

Observe that in most cases the WM(q, 2γ) algorithm is
faster than the WM(2q, γ) algorithm. For instance when
searching sets of 10, 000 patterns the WM(3, 2) variant is
always 4 times faster than the WM(6, 1) variant, while variant
WM(4, 2) is always 2 times faster than WM(8, 1). Similarly
in many cases the WM(q, 3γ) algorithm is faster than the
WM(3q, γ) algorithm. This behavior confirms the efficiency of
our method, especially for larger sets of patterns. For instance
when searching sets of 10, 000 patterns the WM(2, 3) variant
is always 3 times faster than the WM(6, 1) variant.

It is important to observe also that the difference in the
preprocessing times is negligible when comparing different
variants of the WM(q, γ) algorithm. Table V shows the exper-
imental results obtained by comparing the above algorithms in
terms of number of naive verifications for each text position
on sets of 1000 patterns and 10, 000 patterns. In general
the number of verifications reflect the corresponding running
times, higher the number of verifications performed during the
searching phase, higher the running times of the algorithm.

It is interesting to observe that using two or three hash
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m 8 16 32 64 128

MBNDM 16.21 0.20 16.01 8.71 0.20 8.51 8.77 0.20 8.57 8.64 0.20 8.44 8.71 0.20 8.51
WM(2, 2) 81.88 0.52 81.36 81.69 0.51 81.18 83.95 0.52 83.42 81.81 0.53 81.28 82.33 0.57 81.76
WM(2, 3) 84.12 0.64 83.48 85.30 0.65 84.65 85.67 0.66 85.01 84.27 0.67 83.60 85.19 0.73 84.45
WM(3, 2) 67.47 0.52 66.95 67.73 0.51 67.21 67.33 0.52 66.80 67.52 0.54 66.98 67.67 0.58 67.09
WM(3, 3) 92.59 0.65 91.95 91.87 0.66 91.21 91.79 0.71 91.08 92.04 0.76 91.27
WM(4, 1) 33.43 0.38 33.05 30.40 0.38 30.02 28.94 0.38 28.57 29.36 0.39 28.97 29.36 0.42 28.95
WM(4, 2) 35.24 0.53 34.71 24.87 0.53 24.33 23.32 0.52 22.79 23.38 0.55 22.83 23.38 0.60 22.78
WM(4, 3) 26.47 0.66 25.81 23.93 0.66 23.27 23.95 0.71 23.25 23.54 0.74 22.79
WM(6, 1) 32.92 0.37 32.54 20.26 0.37 19.89 16.50 0.37 16.12 15.45 0.39 15.06 14.71 0.39 14.31
WM(6, 2) 15.43 0.52 14.91 11.08 0.52 10.56 10.29 0.56 9.74 9.92 0.59 9.33
WM(6, 3) 10.98 0.66 10.33 9.99 0.71 9.28 9.64 0.77 8.87
WM(8, 1) 50.51 0.36 50.14 9.86 0.37 9.49 5.95 0.37 5.58 4.77 0.40 4.37 4.19 0.43 3.77
WM(8, 2) 15.61 0.53 15.08 6.79 0.54 6.26 5.13 0.57 4.56 4.46 0.63 3.83
WM(8, 3) 8.29 0.67 7.61 5.73 0.74 4.99 4.93 0.86 4.08

TABLE II
EXPERIMENTAL RESULTS FOR SEARCHING SET OF 100 PATTERNS ON A GENOME SEQUENCE.

m 8 16 32 64 128

MBNDM 85.11 0.27 84.84 30.76 0.29 30.47 30.76 0.31 30.45 31.11 0.33 30.78 31.30 0.35 30.95
WM(2, 2) 224.92 0.63 224.2 230.01 0.66 229.3 240.50 0.72 239.7 247.47 0.91 246.5 247.68 1.23 246.4
WM(2, 3) 129.26 0.78 128.4 128.19 0.82 127.3 128.88 0.94 127.9 132.65 1.21 131.4 133.54 1.70 131.8
WM(3, 2) 101.13 0.62 100.5 103.12 0.67 102.4 102.81 0.75 102.0 102.44 0.94 101.5 103.98 1.30 102.6
WM(3, 3) 113.67 0.84 112.8 114.07 1.02 113.0 113.61 1.35 112.2 114.36 1.85 112.5
WM(4, 1) 189.21 0.45 188.7 192.03 0.48 191.5 201.14 0.52 200.6 206.16 0.65 205.5 209.00 0.85 208.1
WM(4, 2) 95.47 0.61 94.86 91.59 0.69 90.91 91.55 0.80 90.74 91.51 1.05 90.46 92.24 1.51 90.73
WM(4, 3) 131.81 0.82 130.9 132.33 1.03 131.3 131.56 1.38 130.1 132.66 2.05 130.6
WM(6, 1) 155.74 0.44 155.3 147.53 0.47 147.0 152.15 0.52 151.6 154.20 0.64 153.5 155.51 0.87 154.6
WM(6, 2) 72.32 0.64 71.68 71.47 0.76 70.71 71.37 1.00 70.37 71.59 1.42 70.17
WM(6, 3) 85.67 0.96 84.70 85.74 1.34 84.40 86.16 2.04 84.13
WM(8, 1) 98.58 0.43 98.14 40.39 0.48 39.91 33.16 0.57 32.59 31.16 0.75 30.42 31.01 1.07 29.94
WM(8, 2) 40.79 0.65 40.14 22.48 0.83 21.65 20.43 1.16 19.27 20.50 1.79 18.71
WM(8, 3) 22.86 1.06 21.79 19.68 1.60 18.08 20.16 2.71 17.45

TABLE III
EXPERIMENTAL RESULTS FOR SEARCHING SET OF 1000 PATTERNS ON A GENOME SEQUENCE.

m 8 16 32 64 128

MBNDM 752.32 0.81 751.5 924.18 1.05 923.1 994.26 1.08 993.1 1057.94 1.39 1056 1089.43 1.82 1087
WM(2, 2) 2063.6 1.26 2062.35 2358.5 1.65 2356.86 2571.7 2.38 2569.36 2681.8 4.07 2677.76 2634.8 7.17 2627.63
WM(2, 3) 481.29 1.47 479.8 481.97 2.01 479.9 516.37 3.10 513.2 545.51 5.72 539.7 538.88 10.29 528.5
WM(3, 2) 341.06 1.36 339.6 365.18 1.68 363.5 381.18 2.55 378.6 394.11 4.62 389.4 389.89 8.12 381.7
WM(3, 3) 158.99 2.23 156.7 158.69 3.79 154.9 161.09 6.79 154.3 164.62 12.18 152.4
WM(4, 1) 1845.5 1.06 1844 2103.1 1.30 2101 2256.6 1.81 2254 2319.1 3.00 2316 2253.6 5.25 2248
WM(4, 2) 212.04 1.28 210.7 185.05 1.83 183.2 188.04 2.99 185.0 192.83 5.48 187.3 195.04 9.82 185.2
WM(4, 3) 161.70 2.23 159.4 168.89 4.13 164.7 166.54 7.67 158.8 170.72 14.11 156.6
WM(6, 1) 1463.0 1.05 1461 1557.6 1.25 1556 1668.0 1.83 1666 1708.5 2.97 1705 1694.0 5.40 1688
WM(6, 2) 195.67 1.53 194.1 203.74 2.65 201.0 218.30 4.96 213.3 213.09 9.37 203.7
WM(6, 3) 185.16 3.63 181.52 198.35 7.57 190.78 195.06 14.10 180.96
WM(8, 1) 473.15 0.91 472.2 332.39 1.34 331.0 343.12 2.14 340.9 378.56 3.94 374.6 356.40 7.15 349.2
WM(8, 2) 135.72 1.52 134.1 123.89 3.23 120.6 136.73 6.72 130.0 136.20 12.83 123.3
WM(8, 3) 152.07 4.29 147.7 168.30 10.18 158.1 170.04 20.43 149.6

TABLE IV
EXPERIMENTAL RESULTS FOR SEARCHING SET OF 10, 000 PATTERNS ON A GENOME SEQUENCE.

functions considerably reduces the number of verification
calls. For instance when using 3 hash functions on 2-grams
on sets of 1000 patterns, the WM(q, γ) algorithm performs
approximately 0.7 verifications for each text position, while
it performs approximately 3.2 verifications for each text po-
sitions when using a single function on 6-grams. The gain is
more evident if we consider the number of verifications when
using 2 hash functions on 3-grams. In this case the value is
approximately 4.7, almost 6 times lower than that obtained
by using a single hash function. A similar behavior can be
observed also in the case of experimental results obtained on
sets of 10, 000 patterns. It is interesting to observe also that in
some cases a reduction of the number of verifications does not

correspond to a reduction in the searching phase. This is the
case, for instance, of the running times of the WM(8, 2) and
WM(8, 3) variants when searching sets of 10, 000 patterns. In
fact, while the number of verifications reduces of almost one
half, the running times increase. This behavior is due to the
time consumed in computing more hash functions when the
gain in number of verifications is not significant.

Thus, when searching for small sets of patterns it is conve-
nient to use a single function and large q-grams. Otherwise,
when the size of the set of patterns increases, it is convenient
to use two hash functions on large q-grams, and in particular
q = 4 and γ = 2 for m < 16, and q = 8 and γ = 2 for
m ≥ 16. Finally we notice that, in our experimental results,
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m 8 16 32 64 128

MBNDM .5261 .0492 .0504 .0492 .0496
WM(2, 2) 5.428 5.471 5.476 5.408 5.427
WM(2, 3) .7368 .7381 .7381 .7339 .7290
WM(3, 2) .4762 .4764 .4809 .4738 .4760
WM(3, 3) - .0413 .0419 .0412 .0413
WM(4, 1) 4.440 4.450 4.443 4.436 4.446
WM(4, 2) .1092 .1078 .1076 .1089 .1089
WM(4, 3) - .0239 .0242 .0240 .0241
WM(6, 1) 3.265 3.233 3.227 3.178 3.124
WM(6, 2) - .0995 .0988 .0978 .0966
WM(6, 3) - - .0267 .0268 .0271
WM(8, 1) .5021 .3258 .2631 .2385 .2247
WM(8, 2) - .0034 .0022 .0019 .0018
WM(8, 3) - - .0006 .0005 .0005

m 8 16 32 64 128

MBNDM 11.94 11.76 11.74 11.74 11.76
WM(2, 2) 54.61 54.44 54.55 54.59 54.56
WM(2, 3) 7.379 7.388 7.380 7.385 7.398
WM(3, 2) 4.785 4.770 4.763 4.782 4.783
WM(3, 3) .4145 .4151 .4153 .4147
WM(4, 1) 44.63 44.61 44.54 44.62 44.63
WM(4, 2) 1.130 1.130 1.134 1.132 1.128
WM(4, 3) .2634 .2636 .2631 .2626
WM(6, 1) 33.75 33.66 33.67 33.75 33.74
WM(6, 2) 1.527 1.530 1.525 1.522
WM(6, 3) .5842 .5834 .5833
WM(8, 1) 5.105 4.971 4.937 4.929 4.929
WM(8, 2) .2024 .1912 .1903 .1903
WM(8, 3) .1111 .1109 .1108

TABLE V
NUMBER OF NAIVE VERIFICATIONS PERFORMED FOR EACH TEXT

POSITION: 1.000 PATTERNS (TOP) AND 10.000 PATTERNS (BOTTOM).

r / m 8 16 32 64 128

100 0.49 0.88 1.47 1.81 2.07
1.000 0.89 0.76 1.36 1.58 1.55
10.000 3.53 6.80 8.02 7.73 7.99

TABLE VI
THE SPEED UPS OBTAINED VIA WM(q, γ) ALGORITHMS.

the choice of values of q larger than 8 and values of γ larger
than 3 lead to bad performances.

Finally Table VI summarizes the speed up ratios achieved
via the new variants. The values has been obtained by dividing
the timing obtained by the MBNDM algorithm by the best tim-
ing achieved by WM(q, γ). As can be viewed from that table,
the newly proposed solutions are in most cases faster than
the MBNDM algorithm. The most significant performance
enhancement is achieved on sets of 10, 000 patterns, where
up to more than 8 fold increase in speed has been observed.
The gain in speed becomes more and more significant with the
increasing size of the patterns sets as well as the lengths of the
patterns. For example while searching 100 patterns of length
32, the WM(q, γ) algorithm is 1.47 times faster than MBNDM,
where that speed up is 2.07 when considering patterns of
length 128 each. The gain in speed up increases up to 7.99
when considering sets of 10, 000 pattern of length 128 each.

V. CONCLUSIONS AND PERSPECTIVES

We provide new solutions for the exact multiple pattern
matching problem based on multiple hash functions which turn
to be very efficient in practice. Although we provided simple

implementations of our approach, experimental benchmarks
showed that on every set sizes the best solution among the
proposed variants is faster in most cases than the MBNDM
algorithm, which is considered the faster solution for match-
ing DNA sequences. Considering the orders of magnitude
performance gain, the presented technique becomes a strong
alternative for multiple exact matching of large sets of patterns
on biological sequences. However it would be interesting to
investigate different types of hash functions in order to find
more efficient combinations. In addition it would be interesting
also to compare the performance of the newly presented
solution against very recent and efficient solutions [4] in the
case of large alphabets.
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