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Abstract—The  problem  of  diagnosing  Pima  Indian  Diabetes 
from  data  obtained  from  the  UCI  Repository  of  Machine 
Learning  Databases[6]  is  handled  with  a  modified  Support 
Vector Machine strategy. Performance comparison with previous 
studies  is  presented  in  order  to  demonstrate  the  proposed 
algorithm's advantages over various classification methods. The 
goal of the paper is to provide the grasp of a methodology that 
can  be  efficiently  used  to  raise  classification  success  rates 
obtained by the use of conventional approaches such as Neural 
Networks,  RBF  networks  and  K-nearest  neighbors.  The 
suggested algorithm divides the training set into two subsets: one 
that arises from the joining of coherent data regions and one that 
comprises  of  the  data  portion that  is  difficult  to  be  clustered. 
Consequently, the first subset is used to train a Support Vector 
Machine with a RBF kernel and the second subset is used to train 
another  Support  Vector  Machine  with  a  polynomial  kernel. 
During  classification  the  algorithm  is  capable  of  identifying 
which of  the two Support  Vector Machine models  to use.  The 
intuition behind the suggested algorithm relies on the expectation 
that  the  RBF  Support  Vector  Machine  model  is  more 
appropriate to use on data sets of different characteristics than 
the polynomial kernel.  In the specific study case the suggested 
algorithm  raised  average  classification  success  rate  to  82.2% 
while  the  best  performance  obtained  by  previous  studies  was 
81% given by a fine tuned highly complex ARTMAP-IC model.

 Index  Terms—Support  Vector  Machine,  Pima  Indian  Diabetes,  
Clustering, Support Vector Machine Kernel

I. INTRODUCTION 
Medical  applications  have  been  pushing  Computational 

Intelligence  advancement  for  some  decades  now  mainly 
because of the need to improve the accuracy of diagnosis and 
the need to reduce the accompanied cost. At the same time the 
medical  sector provides plenty of structured information for 
the researchers to experiment upon. It is an indicative fact that 
the data sets belonging to “life sciences” category currently 
available on UCI Repository are more than 28% of the total 
data  sets  available.  In  turn,  this  amplifies  the  need  to 
constantly improve available prediction algorithms and come 
up with new efficient models of data manipulation.

The Pima Indian  Diabetes  data  set  includes information 
gathered  from females  that  are  at  least  21 years  old of  the 
Pima  Indian  heritage.  It's  a  relatively  popular  set  probably 
because of the difficulty it opposes towards  achieving good 
classification results, a challenge that seems to be responsible 
for  the  data  set's  quite  few  citations.  As  a  result  of  the 
challenging nature of the specific dataset, a variety of simple 
and  complex  models  have  been  tried  to  achieve  improved 
classification  results  [1,2,3,4,5],  but  still  the  success  rates 
remain only around 80%. Smith et al. [4] used the PID data set 
to  evaluate  the  perceptron-like  ADAPtive  learning  routine 
(ADAP). This study had 576 cases in the training set and 192 
cases  in  the  test  set.  Using  576  training  instances,  the 
sensitivity and specificity of their algorithm was 76% on the 
remaining  192  instances.  The  same  number  of  random 
training  and  test  sets  was  used  to  compare  the  simulation 
results.  On the  Pima  Indian  Diabetes  (PID)  database  fuzzy 
ARTMAP  test  set  performance  was  similar  to  that  of  the 
ADAP  algorithm  [4]  but  with  far  fewer  rules  and  faster 
training. An ARTMAP pruning algorithm [2] further reduces 
the number of rules by an order of magnitude and also boosts 
test set accuracy to 79%. 

Methodology Classification success rates(%)

Logistic Regression 77

MLP(Levenberg-Marquardt ) 77

ADAP 76

RBF 68.23

General Regression NN 80.21

ARTMAP-IC 81

KNN 77

ARTMAP 66

Table 1. Performance results of various studies on the PID dataset
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An instance  counting  algorithm ARTMAP-IC  [1]  improves 
accuracy to 81%, at the expense of added complexity to the 
model  used.  Comparison  of  test  set  performance  of  the 
referenced studies is presented in Table 1 [1,2,3,4,5].

The relatively low success achieved by different angles of 
attack is frustratingly opposing claims that  the specific data 
set  is  complete and correct.  As a matter  of fact,  this is  the 
general case when a bunch of machine learning algorithms all 
fail to come up with a model that achieves satisfactory recall 
results. Their results seem to approach a solid upper bound 
that  seems  hard  to  overcome  and  at  the  same  time 
theoretically weaker models (linear classifiers, KNN) achieve 
similar success rates. Analyzing this fact, one may come to the 
conclusion that a combination of two disappointing omissions 
constraint machine learning algorithms from generalizing well 
over  the dataset:  Appropriate  attributes  are  not  used or  the 
variation of attributes over time is highly contributive to the 
information basis of the problem and is not examined or is not 
correctly  embedded  in  any  form in  the  dataset.  These  two 
problematic  phenomena  are  explained  in  the  following 
paragraphs.

In  order  to  gain  a  better  understanding  of  the  first 
constraint let's consider a diagnostician who is able to analyze 
a  person's  genome  and  consequently  to  directly  check  the 
integrity  of  a  gene  (or  genes)  responsible  for  a  specific 
medical condition. This approach would cancel out the need 
for a machine learning algorithm to recognize a disease, since 
an  observation  of  a  directly  linked  “quantity”  (responsible 
gene's structure) provides the answer with zero or negligible 
uncertainty.  Adding  levels  of  abstraction  by  observing  the 
phenotype of a gene's expression in proteins raises the need to 
combine  measurements  of  phenotypes  and  uncertain 
indicators  to generalize over these observations.  The higher 
the level of abstraction, the more carefully the attributes must 
be selected in order to encapsulate the required information 
necessary that in turn will drive the learning process. Usually, 
a higher level of abstraction contributes in the lower expense 
of  data  collection  but  at  the  same  time  it  fades  away  the 
strength of the immediate link and the causality between the 
observation-conclusion  pair.  This  leads  to  the  use  of  less 
appropriate but cheaper to obtain attributes.

The reasoning behind the second omission (not using time 
varying  data  relations)  when referring  to  medical  problems 
relies  partly  on  the  diversity  of  DNA  and  mainly  on  the 
interrelations  of  living  organisms  body  chemistry.  A 
measurement of a physical quantity is affected by factors that 
do not have to do with its immediate effectors. For example, 
blood sugar may be increased by factors uncorrelated to diet 
or  pathology,  like  stress  or  infections.  Taking  various 
measures over time averaging out some unwanted conditions 
may reveal some information that would normally be overseen 
by  one-time  measurements  or  make  it  possible  to  avoid 
unwanted measurement noise. Also a side effect of the dataset 
attributes' abstraction may be the delayed effect of a condition 

on  the  values  of  the  attributes  selected,  which  could  be 
misleading.  For  example,  the  stage  of  a  disease  may have 
different degrees of influence on the attributes, especially on 
early and later stages of manifestation.

When a dataset is used to train a classification model there 
is  little  to  do  about  the  second  omission  regarding  time 
varying  data  relations.  This  should  probably  be  considered 
when conducting data collection. As far as the first problem is 
concerned, regarding attributes' appropriateness, the algorithm 
proves  that  mapping  a  carefully  selected  subset  of  the 
available  data set  to  a  constrained  VC dimensioned feature 
space  (through  the  polynomial  kernel  SVM)  could  reveal 
some relations that would be otherwise unseen when mapping 
the whole data set  to a high or infinite dimensional feature 
space at once (through a RBF SVM). This fact suggests that 
some  data  set  cases  have  large  projections  on  a  group  of 
features that overwhelm weaker projections on other features 
that can provide the means to improve classification rates. The 
goal is to separate the data set into subsets in a way that this  
overwhelming phenomenon is reduced or even minimized. 

II. THE REASONING BEHIND CLUSTERING THE DATASET 
A data set is considered to be of some value provided its 

information basis is maintained and is not malformed by noise 
to a grade  of no separability and the distribution of data is 
more or less imprinted in collected measurements. Given that 
theses prerequisites are met, most of the time one can identify 
two categories  of  the  data  in  respect  to  their  feature  space 
separability:  the  category  of  data  that  can  be  classified 
correctly in an easy or moderate-easy way and a category of 
cases that is more challenging or very hard to separate with 
the use of a single model. When dealing with classification 
problems it  is  usual  to  try  out  several  generalizing  models 
towards an improved and approved solution, mainly including 
neural  networks  with  different  architectures  and  gradient-
based search algorithms, support vector machines with various 
kernels, KNN classifiers, clustering algorithms like k-means, 
discriminant models etc. It is common to observe that specific 
test cases in the validation set are always classified correctly 
and easily.  By easy classification i  mean at  a  safe distance 
from  the  separation  boundary.  A  more  accurate  expression 
would be “classified correctly with high confidence” but the 
sloppier definition is preferred for the sake of the expressing 
argument.  On  the  other  hand,  specific  cases  may  almost 
always  be misclassified.  The above scenario  is  mainly true 
when high successful  classification rates  over the validation 
set  cannot  be  achieved  in  contrast  to  a  significantly  lower 
training  error  without  this  phenomenon  appearing  as  a 
consequence  of  over-fitting.  But  it  may  be  an  effect  of 
erroneous or noisy measurements and in some cases could be 
caused by the use of inappropriate or incomplete attributes set. 
When  the  latter  possibility  concentrates  the  researcher's 
suspicions, a principal component analysis of the data set may 
shed some light to the investigation. 
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This  paper  concentrates  on the  event  that  nothing of  the 
above  problematic  cases  is  present  but  rather  a  more 
disturbing scenario is at hand: The dataset cases are by nature 
difficult to separate by a single generalizing machine learning 
model. It may be the case that the majority of the examples in 
the  validation  set  are  separated  correctly  by  a  number  of 
generalizing models in a highly successful rate but a small or 
medium-sized minority of test cases is terribly processed. The 
end  result  is,  of  course,  the  degradation  of  the  overall 
classification performance. An anticipated side effect of this 
phenomenon is the fact that a linear separation model of the 
data set gives similar (or even better) results to a non-linear 
separation  model  to  the  surprise  of  the  researcher.  This 
surprise is based on the strong belief that the attribute space of 
the data set is not linearly separated. The intuition behind this 
situation is that while the algorithm is trying to minimize the 
training error while constructing a classification boundary, it 
faces the problem that following a generalization concept that 
services the majority of the cases of the problem it raises the 
training error of a respectable (in terms of size) minority.  It  
will eventually favor the largest  of the training cases group 
because minimizing the objective function is apparently only 
feasible through the favoring of the majority. At the same time 
the separation hyper surface is probably not very smooth, a 
quality necessary for good generalization. In turn, this makes a 
linear  separation  of  the  data  perform  quite  satisfactory 
relatively  to  a  non  smooth  hyper  surface  with  large  linear 
regions that may look like a very noisy linear boundary.

The  observation  that  the  use  of  a  linear  kernel  when 
applying the SVM model to construct a classification system 
or the use of an architecture that has no hidden layers for a 
neural network classifier can present results that are similar or 
even better to a well tuned non linear model of the appropriate 
modeling scheme, is a key point that it  worths a little more 
examination. By avoiding the technique of feature mapping in 
a higher dimensional space but instead working in input space 
and still getting better results on a classification problem can 
only  mean  one  disappointing  situation:  feature  mapping  is 
done poorly. On the other hand, when dealing with the RBF 
kernel in SVMs, feature space can be proven to be of infinite 
dimension  and  does  not  constraint  the  production  of  any 
appropriate feature. So feature dimensionality is not an issue. 
The only possibility left is the situation that some cases are 
discriminated by some features that are not really helpful for 
discriminating  among  other  cases  spanning  different 
subspaces in feature space. So it would be rational to detect 
the cases that get a discrimination advantage from one large 
feature  space  (like  the  feature  space  of  a  SVM with  RBF 
kernel)  and  discriminate  the  rest  of  the  cases  in  a  very 
different  but  constrained  feature  space.  By  following  this 
methodology, confusing cases are constrained from preventing 
a smooth generalization boundary to be formed out of reliable 
data while at the meantime these less reliable data cases are 
processed  explicitly  by  polynomial  features  formation.  The 
concept  is  illustrated  in  diagram 1  while  the  details  of  the 

strategy will be more obvious in the third part that describes 
the algorithm.

Fig. 1. Controversial cases decrease smoothness of the classification boundary 
which in turn reduces generalization.  A boundary calculated based on highly 

reliable regions of classes tends to be smoother. The cases that are not 
included in any region are mapped to a polynomial feature space for a 

separate classification model.

In  addition,  another  characteristic  of  data  distribution  is 
considered  by  the  suggested  methodology:  data  clustering. 
Data  belonging  to  the  same  class  may  be  distributed  in 
considerably sparse clusters. As long as these clusters are at 
least  loosely defined,  they are  discovered  by  the  suggested 
algorithm  because  of  its  natural  ability  to  identify  data 
clusters.  Based on the above discussion it may seem rational 
to cluster the training set in a way that the training examples 
that  require  different  or  even conflicting generalizations are 
assigned  to  a  different  modeling cluster.  Classifying  a  new 
case  is  becoming a  two stage  process,  first  recognizing  the 
cluster  a  specific  data set  belongs  to and then applying  the 
correct model for separation. 
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III. REGION BASED SUPPORT VECTOR MACHINE ALGORITH

Having  a  number  of  machine  learning  models  derived 
during the training phase that can be used depending on the 
test  case  under  consideration  seems  very  promising.  The 
selected model for each occasion is based on its suitability to 
operate  on  the  subspace  of  the  problem  that  the  test  case 
belongs  to.  However,  classifying  the  cases  to  problem 
subspaces and training a model for each subspace is by itself a 
modified version of the original problem. There are two major 
problems that one has to overcome in order to be able to deal 
with this angle of view of the classification problem. Making 
the clustering according to input space metrics will not help 
since the problem described in the previous section is laying in 
feature space mapping, so using input space based clustering 
is not an option. What is more, as explained above, splitting 
the feature space into subspaces and maintaining the ability to 
distinguish what model to use for a specific unknown input 
case, it is a classification problem of its own merit.

Regional SVM algorithm deals with these two problems 
by using multiple SVMs decision boundaries to form unified 
areas (regions) that include example cases belonging only to 
one class and exactly zero example cases belonging to other 
class(es).  This results in the formation of confident positive 
regions and confident negative regions since numerically the 
classes  of  an  SVM  dichotomization  are  either  +1  or  -1. 
Positive regions include only a number of positive class cases 
and respectively negative  regions  include only a number  of 
negative  class cases.   To be more specific,  every cluster  is 
defined  by  the  union  of  the  spaces  that  a  group  of  SVM 
classifiers learn to classify as class +1 (positive class region) 
or  class  -1  (negative  class  region).  By  detecting  one  class 
region after the other and the respective data cases that define 
them, the algorithm builds up a set of negative and positive 
class cases that can be used to train an SVM model that uses 
RBF  kernel  to  construct  a  generalizing  boundary  of 
classification. The rest of the cases that during the calculation 
of the SVM regions are left orphan, meaning they are not part 
of a region, are used to construct a second model that will try 
to discriminate between the classes by using a reduced feature 
space kernel (polynomial kernel). This reduced feature space 
kernel will try to create polynomial features of the input space 
and is different from the spatial concept that an RBF kernel is 
using through  the  Euclidean  distance  from selected  support 
vectors. As anticipated, a neural network with a hidden layer 
is capable of applying the concept of the creation and fitting of 
polynomial factors of the input space and so serve the role of 
replacing the polynomial  kernel  SVM, although the latter is 
preferred due to lower execution times when the data set input 
size is not large. Evaluating regions of positive and negative 
cases provides the means to solve the problem of recognizing 
which model is appropriate for an input case: first investigate 
whether the case falls into any of the regions and if so apply 
the RBF kernel SVM, else use the polynomial kernel SVM.

In order to calculate positive and negative regions present 
in the data set,  a genetic  algorithm is put to work with the 

objective to evolve a population of representations of binary 
decisions of whether to include or not the individual cases of 
the given data set in the training of multiple SVMs. In this 
specific case (PID dataset) 3 SVMs are used to be trained over 
evolving data subsets. After the training of the SVMs using 
the  data  set  represented  by  an  individual  from  the  genetic 
algorithm population, the union of the space of the positive (or 
the negative) side of the boundaries of the SVMs is checked to 
detect  whether  it  includes  a  satisfactory  number  of  only 
positive (or negative) examples of the dataset. If it does, the 
corresponding data cases are removed from the current data 
set and the region is saved in memory. A region is defined by 
its sign (positive or negative class), by the set of the SVMs 
whose unions of boundary areas define the region and by the 
data cases that are found in the region. It must be noted that all 
positive regions are calculated first and when it becomes very 
hard for the genetic algorithm to detect more positive regions 
the  whole  process  is  repeated  again  so  as  to  calculate  the 
possible negative regions. Every time a region is detected the 
enclosed  data  cases  are  extracted  from  the  search  and  the 
algorithm is initialized (initial random population generation) 
to the new smaller data set. The fitness function of the genetic 
algorithm has to reflect  the necessity to include only single 
class  cases.  This  is  accomplished  by  constructing  a  fitness 
function  that  depends  on  the  ratio  of  the  defined  region's 
enclosed  cases  belonging  to  the  targeted  class  over  the 
enclosed cases belonging to the undesired class. 

When the positive and negative regions are collected they 
will be used in a twofold way. First, all data cases included in 
both positive and negative regions are combined to produce a 
somehow reliable data set that is used to train a SVM with 
RBF kernel. What is expected as a result is a model that has 
smooth boundary and generalizes well over the data that falls 
into the constructed regions. To determine whether a test data 
case falls into one of the regions learned is just the result of 
classification  of  the  case  with  the  SVMs  that  define  the 
regions one at a time. If a case is classified as positive by all 
the SVMs defining a positive region then it belongs to that 
area by definition. The analogy holds for a negative region. 
All data left out (not belonging to a region) is collected and a 
data  set  is  constructed  that  will  train  a  polynomial  kernel 
SVM. A priori we expect this data set to be hard to separate, 
which  means  that  results  are  expected  to  be lower  that  the 
results  achieved  by the RBF model.  The important  thing is 
that  when  the  two  models  are  combined  to  a  unified 
classification system one should get significantly better results 
compared  to  the  case  of  training  one  model  for  the  whole 
original dataset. 

The  following  steps  define  the  algorithm's  major 
functionalities:

1)  Initialize the genetic algorithm with a population of N 
individuals  with  random  genes  and  train  initial  SVMs 
accordingly. For each population individual there are two sets 
of  information:  the  training  sets  that  are  used  by the  RBF 
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SVMs to  create  combined  regions  of  classification  and  the 
actual SVM set.

      2)   Fitness Function reflects the search for solely positive 
regions.  Each  individual's  fitness  function is  the number  of 
positive cases that are classified as positive by all of its SVM 
models over the number of negative cases that are classified as 
positive by all of its SVM models.

3)  The  population  is  evolved  through  crossover  and 
mutation  by  maximizing  fitness  function f ( p i) .  After  a 
genetic operator is applied to an individual its corresponding 
SVMs must be trained again.

4)  If  after  an  epoch  an  individual  has  a  high  fitness 
function (meaning zero negative class cases) and the number 
of the positive cases is more than or equal to 5% of the total 
positive data set  examples, then the region is saved and the 
included cases  are removed from the total  training set.  The 
process is repeated from step (1).

5)  When  the  algorithm  cannot  detect  any  more  valid 
positive regions, search for positive regions is ended and steps 
1 to 4 are repeated for the negative regions with the reversal of 
the fitness function to reflect the goal of searching negative 
regions. 

6)  All  cases  included in all  regions  (either  positive or 
negative) form a training set that is used to train the main RBF 
SVM.  All  left  over  cases  not  belonging  to  a  positive  or  a 
negative region are used to train a polynomial kernel SVM. 

7)  During the classification phase, the unknown case is 
passed through the RBF SVMs of the detected region (not the 
main RBF SVM) and if it is found to belong to any of these 
regions it is classified with the main RBF SVM. Otherwise it 
is classified by the polynomial kernel SVM. 

IV. RESULTS

The suggested algorithm was used to divide the data set to 
two subsets:  the  one  that  is  used  to  train  an  RBF support 
vector machine and the one that is used to train a polynomial  
support  machines.  The  complete  data  set  consists  of  500 
normal  cases  and  268 abnormal  cases.  Region  based  SVM 
algorithm results in the creation of a RBF training set of 376 
normal and 177 abnormal cases and of a polynomial training 
consisting of 124 normal and 91 abnormal cases. In turn, these 
training sets are used to train both SVMs by a 5-fold cross 
validation  technique.  Each  validation  set  pair  is  shown  in 
Table 2 and the final results are shown in Table 3.

RBF SVM POLYNOMIAL SVM

Training 
Set 

Norm

Training  
Set 

Abnorm

Test 
Set

Norm

Test Set  
Abnorm

Training 
Set 

Norm

Training  
Set  

Abnorm

Test 
Set

Norm

Test Set  
Abnor

131 123 245 54 62 54 62 37

Table 2. Cross Validation Data Sets' sizes

RBF SVM POLYNOMIAL 
SVM

 Overall Final Test 
Results

Val/ion 
Set no

Normal 
Cases 

Success 
Rate  
(%)

Abnorm 
Cases 

Success  
Rate (%)

Normal 
Cases 

Success  
Rate 
(%)

Abnorm 
Cases 

Success 
Rate  
(%)

Normal 
Cases 

Success 
Rate  
(%)

Abnorm 
Cases 

Success  
Rate (%)

1 98.38 86.94 67.75 64.87 83.06 82.41

2 83.68 92.6 64.52 67.57 79.98 82.41

3 85.3 92.6 70.97 64.87 82.41 82.41

4 86.94 90.74 64.52 70.27 82.41 81.31

5 88.57 88.89 64.52 72.97 83.71 82.41

Table 3. Final results on various validation test sets. The overall success rate 
is calculated using the success rates of both the RBF and the polynomial 

SVMs.

V. CONCLUSIONS

The overall results are compared with the ones of several 
previous studies shown in Table 1 and a small improvement 
on the average  performance  is  achieved  with the  suggested 
algorithm. It is important to note that the suggested algorithm 
is  able  to  outperform  much  more  complex  algorithms  like 
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ARTMAP-IC  and  achieves  satisfactory  performance  while 
avoiding excess tuning. Another important attribute of region 
based SVM algorithm is that it can be applied without further 
considerations  or  modifications  to  any  “hard”  classification 
problem  that  seems  difficult  to  solve  with  high  successful 
classification rates.

On the other hand there are some limitations in applying 
the  suggested  algorithm.  The  most  obvious  one  is  the 
limitation raised by the data set size. A small dataset  is not 
eligible for solving with the presented algorithm because of 
the  algorithm's  natural  approach  to  divide  the  dataset  to 
clusters which in turn reduces the size of the test sets making 
the  test  phase  unreliable,  prone  to  over  fitting  or  even 
unfeasible  when just a bunch of test examples are available. 
Consequently the available dataset must comprise of at least 
some  hundred  examples.  Another  issue  that  region  based 
SVM  must  deal  with  is  the  execution  time  of  the  genetic 
algorithm  when  the  dataset  is  large.  Special  programming 
skills must be used to improve performance with the use of 
parallel execution being the most efficient approach to follow. 

Finally the algorithm's performance was not tested on multi 
class problems.
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