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Abstract—The purpose of this study was to investigate the 
feasibility of using forehead biosignals as informative channels 
for classification of music-induced emotions. Classification of 
four emotional states in Arousal-Valence space was performed by 
employing two parallel support vector machines as arousal and 
valence classifiers. Relative powers of EEG sub-bands, spectral 
entropy, mean power frequency, and higher order crossings were 
extracted from each of the three forehead data channels: left 
Temporalis, Frontalis, and right Temporalis. The inputs of the 
classifiers were obtained by a feature selection algorithm based 
on a fuzzy-rough model. The averaged subject-independent 
classification accuracy of 93.80%, 92.43%, and 86.67% for 
arousal classification, valence classification, and classification of 
four emotional states in Arousal-Valence space, respectively, is 
achieved.  

Keywords-forehead biosignals; emotion classification; arousal; 
valence. 

I.  INTRODUCTION  
Everyone knows that listening to music improve negative 

moods. Accordingly, music therapy has received increased 
attention over the last few years. Music therapists work with a 
variety of emotional and psychophysiological symptoms. 
Hence, it would be great if the therapists knew what effects a 
music excerpt has on human’s emotional state. 

Many studies have explored the effects of different kinds of 
music stimuli on central nervous system (CNS) and peripheral 
nervous system (PNS) responses. The research on CNS 
responses has shown that depending on the type of musical 
stimuli spectral power of EEG bands can be altered [1]; and 
frontal regions and auditory cortex appear to have certain 
activity for musical processing [2].  

In recent years a number of researchers have been worked 
on the issue of emotion recognition during music listening. 
Kim and André [3] investigated the potential of surface 
electromyogram (EMG), electrocardiogram (ECG), Galvanic 
skin response (GSR), and respiration changes for emotion 
recognition during listening to music. Lin et al. [4] applied 

support vector machine (SVM) to categorize EEG dynamics 
according subject self-reported emotional states during music 
listening. However, the accuracy of emotion recognition 
systems are improving, many users may not feel comfortable 
with interfaces such as EEG-caps or respiration belts.  

In order to providing user-friendly human-machine-
interface (HMI) Firoozabadi et al. [5] proposed a novel 
biosignal acquisition method by locating three pairs of 
electrodes on participant’s Frontalis and Temporalis forehead 
muscles. These forehead biosignals (FBS) convey both the 
information of their adjacent standard EEG locations as well as 
facial expression information. More recently, Rezazadeh et al. 
[6] applied the FBS signals to design a control interface which 
could be adapted to user’s affective state.  

The present paper, with the knowledge that the frontal 
regions have a key role in emotional processing, was designed 
to study the feasibility of using FBS signals for emotion 
classification during music listening. Classification of four 
musical emotions in the Arousal-Valence emotional space is 
performed by using features of FBS data. We utilize a feature 
reduction algorithm based on a generalized fuzzy-rough and 
employ the support vector machine to classify FBS signals. 

II. METHODS 
      First of all, emotional biosignals should be recorded by 
applying appropriate musical stimuli. After signal acquisition 
and preprocessing stage, we calculated four sort of temporal 
and spectral features from each of the biosignals and selected 
the most significant feature subsets and classifiers for arousal 
and valence classifications. Putting together the outputs of the 
valence and arousal classifiers, the four-class classification 
can be performed. In the following we explain the mentioned 
items in more detail 

A. Emotional Stimuli 
We place listeners’ emotional states in the four quadrants of 

Arousal-Valence plane. Arousal, which varying from low to 
high, describes the extent of calmness or excitation felt by 
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people; and valence, which varying from ne
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to complete a questionnaire which consisted 
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B. Experiment procedure 
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pairs are places on left and right Tempor
about 4 cm inter-electrodes distance (left T
and right Temporalis channel).  Fig. 2 show
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sampling frequency and amplifier gain were 
and 5000, respectively.  
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sound proofed room with minimal light for th
biosignals. They were instructed to keep the
on the headphones, and remain seated in th
experiment. The data were recorded during 60
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C. Preprocessing and feature e
Raw FBS signals were filter

stop: 47-53 Hz). Then, all th
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acquired during silent; and em
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Emotional FBS data were div
each segment 5 groups of featu
the resting pattern, the feature
signals to calculate the norm
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where ܨ௦௧ is a feature value ܨ௧ሺ݆ሻ  is a feature v
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applied for classifications. 
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Relative powers 
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from fast Fourier transform, 
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Mean frequency  

The mean frequency (MF) [8] in the range fଵ െ fଶ  is 
calculated as ܨܯ ൌ ∑ ݂ ൈ ܲሺ ݂ሻమୀభ∑ ܲሺ ݂ሻమୀభ ,                      ሺ3ሻ 

where ܲሺ ݂ሻ is PSD at frequency ݂. We selected the range 
of 4-35 Hz for MF calculation.  

 
Higher Order Crossings (HOC) 

Higher order crossings (HOC) [9] are obtained by counting 
the number of zero-crossings in the filtered time series. The 
HOC of order m, ܥܱܪ, for a zero-mean time series of ݔሺ݊ሻ 
can be calculated as ܥܱܪ ൌ NZC൛ିଵ൫ݔሺ݊ሻ൯ൟ, ݉ ൌ 1,2,3, …     ሺ4ሻ 
where  is backward difference operator; and NZC{.} denotes 
the number of zero crossings. In this paper, ܥܱܪଵ  to ଼ܥܱܪ 
were calculated and divided by duration of the time series. 

D. Feature evaluation criterion  
To evaluate the extracted features, we used a novel feature 

significance measure, presented by Hu et al. [10], which 
derived from a generalized fuzzy-rough model. After 
normalizing the observations of each dimension in the feature 
space, the significance measure will be obtain after some 
calculations given in the following. 

In a feature space of F, the fuzzy equivalence class ሾݔሿி of 
observation ݔ is defined as ሾݔ୧ሿி ൌ ଵݔଵݎ  ଶݔଶݎ  ڮ  ேݔேݎ ,          ሺ5ሻ 

 
where N is the total number of observations,  “+” means the 

union, and ݎ  is the output of a symmetrical membership 
function which measures the value of the fuzzy similarity 
degree between ݔ  and ݔ . That is, ݎ ൌ ݂൫หݔ െ ݔห൯, where หݔ െ  . In thisݔ  andݔ ห means Euclidean distance betweenݔ
paper, a gaussian similarity relation function was adopted:  ݎ ൌ exp ቀെ ൫ݔ െ ൯ଶݔ ⁄ଶߪ2 ቁ , ߪ ൌ 0.25  .       ሺ6ሻ 

We can define the lower approximation of the decision X as ܨܺ ൌ ሼݔ|ܫሺሾݔሿி, ܺሻ  ݇, ݔ א ܷ ሽ, 1  ݇  0.5,        ሺ7ሻ 
where ܫሺܣ, ሻܤ ൌ ∑ ఓಲתಳሺ୶ሻೣאೆ∑ ఓAሺ୶ሻೣאೆ  , and ߤAሺxሻ  is 

membership degree of x in the fuzzy set A. k is a parameter 
which reflects users’ tolerance degrees of noise. The less the k, 
the more the users can tolerance noise. For a two-class 
problem, the lower approximation of classification D is 
defined as ܨܦ ൌ ൛ܨ ଵܺ,  ܺଶൟ.                              ሺ8ሻܨ

Finally, the feature significance measure of feature space F 
for classification D is calculated as ߛ ൌ หܨܦหܰ ,                      ሺ9ሻ 

     where |.| is the cardinality (number of elements) of a set. 
Obviously, 0  ߛ  1. The greater the  ߛ  , the higher class 
separability. 

E. Feature selection method  
For each parameter k of the described feature evaluation 
criterion, we used the sequential forward floating selection 
(SFFS) approach [11] to select informative feature subsets, F. 
Thereafter, the feature subsets were imposed to classifiers and 
classification rates were calculated.  

F. Classifiers 
This study employed support vector machines (SVM) [11] for 
pattern classification. In the SVM classifiers, a radial basis 
function is used as a kernel function for data projection. To 
design a FBS-based emotion recognition system which 
classifies the music-induced emotions to four classes of 
positive valence-low arousal, positive valence-high arousal, 
negative valence-high arousal, and negative valence-low 
arousal we considered the following steps to be performed: 

• Putting the extracted data in two classes of high 
arousal and low arousal based on their labels.  

• Changing the threshold k of the feature evaluation 
criterion from 0.5 to 0.95 with step 0.05; selection of 
features for high arousal-low arousal classification 
problem; and determining average arousal-
classification accuracy for each k.  

• Determining the threshold ݇, for the most accurate 
arousal classifier.  

• Putting the extracted data in two classes of positive 
valence and negative valence based on their labels. 

• Changing the threshold k of the feature evaluation 
criterion from 0.5 to 0.95 with step 0.05; selection of 
features for positive valence-negative valence 
classification problem; and determining average 
valence-classification accuracy for each k. 

• Determining the threshold ݇, for the most accurate 
valence classifier.  

• Putting together the outputs of ݇ -based arousal 
classifier and ݇-based valence classifier to develop 
FBS-based emotion recognition system.  

       In order to estimate the true power of the arousal or 
valence classifiers, a twenty five times of 4-fold cross 
validation technique was adopted. 

III. RESULTS 

A. ArousalClassification 
According to Table I, arousal classification accuracy and 

selected features of each channel vary with the specified 
threshold of the feature evaluation criterion. We can find that 
for ݇=0.75 the average accuracy rate is maximum (93.8%). 
The selected feature subset, labeled as ADFS (arousal 
discriminant feature subset), for classifying high arousal and 
low arousal emotions is made from concatenation of the 
following features: ܴ ఈܲଵ  and ܴ ఊܲ of left Temporalis channel,  ܴ ఈܲଵ,ܴ ఉܲ, and SE of Frontalis channel, and ܥܱܪଶ, ܥܱܪଷ, and ܥܱܪହ of right Temporalis channel.  
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B. Valence Classification 
Table II presents that valence classification accuracy and 

selected features of each channel vary with the specified 
threshold of the feature evaluation criterion. We can find that 
four set of features, labeled as VDFS1, VDFS2, VDFS3, and 
VDFS4 (valence discriminant feature subset), significantly 
obtain the highest mean classification accuracy (92.06%, 
92.43%, 91.74%, and 91.68% corresponding to ݇=0.75, 0.8, 
0.85, and 0.95) among selected feature subsets. However, the 
maximum mean classification accuracy for classifying positive 
valence and negative valence emotions is obtained from 
concatenation of the following features: ܥܱܪଵ  of left 
Temporalis channel, ܴ ఏܲ , ܴ ఈܲଵ , ܴ ఉܲଵ , and ܴ ఉܲ of Frontalis 
channel, and ܴ ఈܲଵ ଵܥܱܪ , ଶܥܱܪ , , and ଼ܥܱܪ  of right 
Temporalis channel. 

C. Final Results 
The results of arousal and valence classifications reveal that 

the emotions which induced by listening to music can be 
classify to high arousal or low arousal, and positive valence or 
negative valence by using two parallel SVM classifier.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Applying an input pattern, the output 0 or 1 is obtained for 
each classifier.  Therefore, a four class emotion recognition 
system can be designed by combining the arousal and valence 
classifiers.  

The overall classification accuracies and for the different 
optimum feature subsets are tabulated in Table III. The 
maximum (not significantly) overall classification accuracy is 
obtained 86.67±4.83 % by putting together the outputs of the 
ADFS-input arousal classifier and VDFS2-input valence 
classifier.  

 

 

 

 

 

 

 

TABLE I 
SELECTED FEATURES AND CORRESPONDING AROUSAL CLASSIFICATION RATES VERSUS THE PARAMETER OF THE 

FEATURE EVALUATION CRITERION  

k  Selected features for 
 left Temporalis channel 

Selected features for  
Frontalis channel 

Selected features for  
right Temporalis channel 

Classification 
Accuracy 

0.5 ܴ ఊܲ ܥܱܪ  65.06 ±6.97 % 
0.55 ܴ ఏܲ, ܴ ఉܲ ܴ ఏܲ, ܥܱܪଶ ܥܱܪଷ 88.74± 5.21 % 
0.6 ܴ ఉܲଵ, ܥܱܪ ଼ܥܱܪଷ ܥܱܪଷ,  %  86.22± 5.68ܥܱܪ

0.65 ܴ ఉܲଵ, ܴ ఊܲ, MF, ܥܱܪ  ଼ܥܱܪଶ, ܥܱܪହ 88.71± 4.56 % 
0.7 ܴ ఏܲ, ܴ ఊܲ ܴ ఈܲଵ, ܴ ఈܲଵ, ܴ ఉܲ  ܥܱܪଷ, ܥܱܪହ 92.34±4.12 % 

0.75 ܴ ఈܲଵ, ܴ ఊܲ  ܴ ఈܲଵ ,ܴ ఉܲ, SE ܥܱܪଶ, ܥܱܪଷ, ܥܱܪହ 93.80± 3.47 % 
0.8 ܴ ఊܲ, MF ܴ ఏܲ, ܴ ఈܲଵ, ܴ ఉܲଵ, ܴ ఉܲଶ ܴ ఈܲଶ , ܴ ఉܲଵ, ܥܱܪଷ 89.88± 4.85 % 

0.85 ܴ ఊܲ, MF, ܥܱܪଵ, ଼ܥܱܪ ܴ ఏܲ, ܴ ఈܲଵ, ܴ ఈܲଶ, ܴ ఉܲଵ ܴ ఏܲ, ܴ ఈܲଶ, ܥܱܪଷ 91.11± 4.28 % 
0.9 ܴ ఏܲ ,ܴ ఈܲଵ, ܥܱܪଵ ܴ ఏܲ ,ܴ ఈܲଵ, ܴ ఉܲଵ, ܥܱܪ MF, ܥܱܪଵ, ܥܱܪଶ 90.14± 4.96 % 

0.95 SE, ܥܱܪଷ, ଼ܥܱܪ ܴ ఈܲ  63.97± 7.52 % 
 

k: The parameter of fuzzy-rough model (feature evaluation criterion).  
The bolded rates indicate the most classification accuracies among the all feature subsets (p<0.05).  

TABLE II 
SELECTED FEATURES AND CORRESPONDING VALENCE CLASSIFICATION RATES VERSUS THE PARAMETER OF THE FEATURE 

EVALUATION CRITERION  

k  Selected features for 
 left Temporalis channel 

Selected features for  
Frontalis channel 

Selected features for  
right Temporalis channel 

Classification 
Accuracy 

0.5 ܴ ఏܲ   69.88± 6.31 % 
0.55 ܴ ఏܲ   69.88± 6.52 % 
0.6 ܴ ఈܲଵ   70.00± 6.34 % 

0.65 ܴ ఉܲଵ   69.74± 5.99 % 
0.7   SE 70.68± 7.23 % 

ܴ ଵܥܱܪ 0.75 ఏܲ ,ܴ ఈܲଵ, ܴ ఉܲଵ, ܥܱܪ ܴ ఈܲଵ, ܥܱܪଵ  92.06± 4.29 % 
ܴ ଵܥܱܪ 0.8 ఏܲ, ܴ ఈܲଵ, ܴ ఉܲଵ, ܴ ఉܲ  ܴ ఈܲଵ, ܥܱܪଵ, ܥܱܪଶ, 4.42 ±92.43 ଼ܥܱܪ % 

0.85 ܴ ఏܲ, ܴ ఊܲ, ܥܱܪଵ ܴ ఏܲ, ܴ ఈܲଵ, ܴ ఈܲଶ, ܴ ఉܲଵ ܴ ఈܲଵ, MF, ܥܱܪଷ, 4.77 ±91.74 ଼ܥܱܪ % 
0.9 ܴ ఏܲ, MF, ܥܱܪଵ ܴ ఏܲ, ܴ ఈܲ, ܴ ఉܲଵ, ܥܱܪହ ܴ ఏܲ, ܥܱܪଵ, ܥܱܪଶ, 4.74 ±90.48 ଼ܥܱܪ % 

0.95 ܴ ఏܲ, ܴ ఉܲଵ, ܥܱܪଵ, ܥܱܪ ܴ ఏܲ, ܴ ఈܲଵ, ܴ ఈܲଶ, ܴ ఉܲଵ, ܥܱܪଵ  
ܴ ఏܲ, MF, ܥܱܪଵ, ܥܱܪସ 91.68± 4.34 % 

     
k: The parameter of fuzzy-rough model (feature evaluation criterion).  
The bolded rates indicate the most classification accuracies among the all feature subsets (p<0.05).  
 

TABLE III 
OVERALL CLASSIFICATION RATES AND SENSITIVITY VALUES FOR 

THE SELECTED FEATURE SUBSETS  

Feature Type of 
Arousal Classifier 

Feature Type of 
Valence Classifier 

Classification 
Accuracy (%) 

ADFS (݇=0.75) VDFS1 (݇=0.75) 86.39±5.70 
ADFS (݇=0.75) VDFS2 (݇=0.80) 86.67±4.83 
ADFS (݇=0.75) VDFS3 (݇=0.85) 86.05±5.52 
ADFS (݇=0.75) VDFS4 (݇=0.95) 86.01±5.29 
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IV. DISCUSSION 
The present study was performed to demonstrate the 

feasibility of using forehead biosignals for classifying music-
induced emotions. After acquisition and preprocessing of the 
FBS signals, the following features were extracted:  relative 
powers (RP) of EEG spectrum sub-bands, spectral entropy 
(SE), mean frequency (MF), and higher order crossings. Two 
SVM classifiers were designed separately and combined 
afterwards: arousal classifier, and valence classifier. The inputs 
of the classifiers varied according to parameter k of the feature 
evaluation algorithm.  

As be seen in Table I and Table II, RP features and HOC 
features were dominantly selected for arousal or valence 
classification. The selected features support the conclusions of 
previous researches which revealed that there are associations 
between brain wave powers and emotional states [1]. Besides, 
HOC features involve in formation of feature subsets. HOC 
features were recently introduced and utilized for EEG-based 
emotion recognition [9]. Our results verify the effectiveness of 
these features for FBS data classification.  

The best arousal classification rate, the best valence 
classification rate, and corresponding total classification rate 
were obtained 93.80±3.47%, 92.43±4.42%, and 86.67±4.83%, 
respectively. Currently, researchers are working on developing 
emotion recognition systems, especially by applying musical 
stimuli. Using four-channel biosignals Kim and André [3] 
presented an average classification rate of 70% for subject-
independent PNS-based emotion recognition across 4 subjects. 
Lin et al. [4] proposed an EEG-based emotion recognition 
system for distinguishing 4 musical induced emotions with the 
maximum average accuracy of 82.29±3.06% across 26 subjects. 
Compared with previously published works on emotion 
recognition during music listening, we achieved higher 
classification rates. Moreover, the proposed FBS-based 
classification has the advantages of subject independency, and 
small number of data channels. By using the proposed emotion 
recognition system, we hope to see increasing progress in the 
fields of music therapy and interactive multimedia systems.  
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