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Abstract—Electrocorticography (ECoG) offers the possibility
of decoding movement intention even in the absence of motor
control, making it a powerful signal source for brain-computer
interfaces (BCI). We designed a BCI that translates attempts to
move the hand into movements of a video of an opening hand
to investigate its use for pain therapy and stroke rehabilitation.
One patient with phantom limb pain after amputation of the arm
and one patient suffering from chronic pain and paralysis after
a stroke trained with this BCI for several sessions. Signals were
acquired with epidural ECoG grids placed over the motor cortex
contralateral to the affected or missing hand. The analysis of data
obtained in screening sessions with cued attempted movements
showed highly significant (p < 0.01, permutation test) r

2 values
for the discrimination between movement and rest conditions for
most frequencies up to 200 Hz. Both patients acquired control
of the BCI system which was verified by the evaluation of three
measures of the ability to start and stop the video application.
In particular, both patients learned to reliably start the video
application in all trials. This demonstrates that it is feasible for
patients with phantom limb pain and chronic pain as well as
paralysis after stroke to operate a BCI that targets their missing
or impaired limb, making it a potentially useful tool for new
approaches in pain therapy and stroke rehabilitation.

Index Terms—Brain-computer interfaces, chronic pain, phan-
tom limb, stroke, electrocorticography

I. INTRODUCTION

Electrocorticography (ECoG) has been employed as a signal

source for brain-computer interfaces (BCI) in recent years

for several studies, mostly with subdural placement of the

electrodes (e.g. [1], [2]), although a few BCI studies with

epidural placement exist [3], [4]. Even though there is a

decrease of power in lower frequencies in epidurally recorded

signals compared to subdural recordings, the signal quality is

suitable for driving a BCI [5]. ECoG offers the possibility of

acquiring signals with a higher spatial resolution than EEG

[6], thus providing the clinician with the ability to target very

specific brain regions for feedback training in patients with

cortical maladaptation. In addition, implanted electrodes can

be used to deliver electrical stimuli for direct interaction with

the brain. This could be a promising tool for the induction of

cortical plasticity to provide a beneficial effect in conditions

such as chronic pain or stroke. So far, the use of implanted

electrodes for brain-computer interfaces has been largerly

restricted to epilepsy patients (e.g. [1], [2], [7], [8] and in

some cases to patients with severe motor impairments because

of for example spinal-cord injury [9] or late-stage amyotrophic

lateral sclerosis (ALS) [10].

We demonstrate in this work the feasibility of applying ECoG-

BCIs to other patient groups and report the results of BCI

training with one phantom limb pain patient and one patient

suffering from chronic pain after a stroke. By evaluating three

performance measures for BCI control, we show that both

patients gained control of a BCI that translated attempted

movements of the amputated or impaired hand into movements

of a virtual hand by using epidural ECoG signals from

the affected brain hemisphere. These experiments were part

of a study on the use of a bidirectional cortical interface

that employed cortical stimulation and BCIs for movement

restoration in stroke and the establishment of a communication

channel with ALS patients [11].

II. MATERIALS AND METHODS

A. Patients

Two patients with chronic pain participated in this study.

Patient S was a 63 year old man whose right arm was ampu-

tated after a motorcycle accident, leading to chronic phantom

limb pain. Imaging studies suggest [12], that phantom limb

pain might be related to reorganisation of the somatosensory

cortex following the amputation [13]. He regularly experienced

pain attacks in his phantom arm and was able to perform

movements with his phantom arm. He had received several

pain treatments, including mirror therapy [14] that provided

no beneficial effect for him.

Patient P0 was a 68 year old man who suffered from chronic

pain following a subcortical stroke which also lead to paralysis

of his left hand. Patient P0 was accustomed to the BCI setup,

because he had trained with the system for five sessions before

the implantation using EEG.

Both patients were implanted with an epidural ECoG grid

for a period of two weeks to select target areas as well

as stimulation parameters to be used later in a chronically

implanted stimulator applying motor cortex stimulation for

pain reduction [15].

B. Electrophysiological recording

Patient S was implanted epidurally with an 8x8 ECoG grid

of platinum contacts (Ad-Tech, Rancine, WI) with 2.3 mm

diameter of the exposed electrode surface and 5 mm center-

to-center distance. The grid was centered on the anatomical
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Fig. 1. Position of the ECoG electrodes, determined by fusion of pre-
surgical MRI and a CT obtained after implantation. The electrodes used for
the feedback experiments are marked as black dots. (a) Patient S, channels
38, 46 and 54 marked. (b) Patient P0, channels 36 and 37 marked.

hand knob of left primary motor cortex contralateral to the

amputated arm. It covered a large part of left primary motor

cortex along the diagonal of the grid as well as premotor and

sensory areas (Fig.1 (a)).

Patient P0 was implanted with an 8x12 ECoG grid with the

same electrode properties as patient S. The grid was also

centered on the anatomical hand knob of left M1 but extended

further towards the premotor cortex (Fig.1 (b)).

Signals were acquired with a BrainAmp (Brain Products,

Munich, Germany) with a high pass filter at 0.15 Hz and

sampling rate fs = 1000 Hz. We also recorded EMG activity

from the left arm of patient S using bipolar electrodes to check

for movements of the healthy side.

C. Channel and feature selection

Each patient performed two screening sessions prior to BCI

training to identify channels and features for classification. The

patients performed 24-30 trials per session of cued attempted

movements of the phantom hand or the paralyzed hand. Each

trial consisted of a movement cue in form of a picture of a

hand with extended fingers shown for 4 seconds, 2 seconds of

movement, 2 seconds of hold and 4 seconds of relaxation. The

patient was instructed to attempt to open his left hand during

the movement period. During the hold phase, the patient had

to stop the movement and to attempt to hold the hand in the

current position. We expected to find features that discriminate

between the movement phase and the resting phase in the

spectral domain due to event-related desynchronization (ERD)

of sensory motor rhythms (SMR) and synchronization (ERS)

in the γ and high-γ frequency bands [16]. We estimated the

spectral power between 1 and 200 Hz for all channels and

computed r2 scores for the discrimination between movement

and rest (Fig.2). Significance of the r2 values was assessed

with a permutation test, using 105 random permutations of the

class labels (movement and rest). We computed the r2 values

for each permutation, extracted the maximum of the values

for all channels and frequencies, sorted them and used the

0.99 · 105-th value as the significance threshold. To make sure

that the patient was relaxed, we used only data from seconds

1 to 3 of the relaxation phase instead of the full 4 seconds for

the analysis.

An additional source of information for patient S was data

generated by cortical mapping with electrical stimulation.

Channels for feedback training of S were chosen from the

subset of channels eliciting phantom hand sensations dur-

ing cortical mapping. We found highly significant r2 values

(p < 0.01) on channels 38, 46 and 54 for frequencies in the

range 10-40, 55-145 and 170-190 Hz. We decided to use the

frequency band of 130-145 Hz as part of the high γ band

for feedback training because the highest r2 values for this

band were found for channels that also elicited hand sensations

during stimulation. Also, high frequency information seems to

be beneficial for decoding of movements and is associated with

activity of a small cortical area, thus it is very well suited for

our application which relies on the feedback of very specific

cortical activations.

In the case of patient P0, cortical stimulation did not lead

to additional insight. We selected channels 36 and 37 for the

feedback training because these channels displayed the highest

r2 values for the discrimination between hand movement and

rest for all channels located close to the region in sensorimotor

cortex associated with hand function in healthy subjects. In

contrast to patient S, r2 values for frequencies greater than

50 Hz were clearly smaller than the ones for low frequencies,

leading us to use the frequency band between 13 and 19 Hz

for feedback.

D. Setup of the BCI experiments

We employed the BCI2000 software package

(http://www.bci2000.org) [17] for feedback training. The

signal processing stage consisted of the estimation of spectral

power values for the selected channels and frequencies which

were used as input features for an adaptive linear classifier.

For the computation of the spectral features, we estimated

the coefficients an autoregressive model with order 16 with

the Burg algorithm [18] which was fitted to a data buffer

containing the signal acquired during the last 500 msec. The

linear classifier produced a weighted sum of the power values

which was normalized relative to the distribution of classifier

outputs of the last three movement phases. All classifier

weights were set to 1 for patient S and to −1 for patient

P0. This differentiation was necessary due to the different

frequency bands used for feedback: During a movement
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Fig. 2. r2 values of screening data for the ECoG channels used in the
feedback experiments. The grey shaded areas contain the frequencies with
significant (p < 0.01) r2 values for all channels. (a) r2 values for channels
38 (dashed-and-dotted), 46 (solid) and 54 (dashed) of patient S. (b) r2 values
for channels 36 (solid) and 37 (dashed) of patient P0.

(active, attempted or imagined) one can find an increase in

power for high frequency bands such as the band used for

patient S and a decrease in low frequency bands [16]. The

inverted sign of the classifier weights therefore ensures that

a positive output of the normalization stage was associated

with movement, while a negative value represented rest.

Data packets were received and processed by the application

every 40 ms, resulting in 25 outputs of the classifier per

second. In order to smoothen the display and to make it

harder to change the state of the feedback, 5 consecutive

outputs of the normalization stage with the same sign were

necessary to switch the feedback on (in case of a positive

sign and stopped feedback) and off (negative sign, running

feedback). We chose as feedback device a video of an opening

hand which was shown on a screen placed in front of the

patient. This was implemented as a minimal video player

using the Phonon API which received the control signal from

BCI2000 via UDP. The video was shot from the perspective

of the patient looking at his opening hand, thus providing

more realistic feedback. Each session was subdivided into

several runs separated by short breaks, each run consisting

of 10 trials. Patient S trained for 5 sessions (53-190 trials

per session) with this BCI, resulting in 682 trials. Patient P0

completed 7 sessions (100-170 trials per session) for a total

of 908 trials.

In each trial, the patient received an auditory cue (”Go!”),

prompting him to attempt to open his paralyzed or phantom

hand. He had to maintain this attempted movement for several

seconds. For our first patient S, this period had a length of

5 seconds. After finishing the BCI experiments, he stated

that he was not always able to sustain the opening of his

phantom hand as one continuous movement over the whole

5 seconds which may have affected his concentration at the

end of the trial. We therefore reduced the duration of the

movement period to 4 seconds for the next patient P0. After

the movement period, the patient received another auditory

cue (”Relax!”), followed by 5 seconds of relaxation before

the next trial started. If the BCI system detected an intention

to move the hand during the movement phase, the video was

either started or resumed to play, if not, then the video was

paused.

E. Performance analysis

We removed all trials showing artefacts (e.g. from cable

movements) on the channels used for classification. In the

case of patient S, we also excluded all trials showing EMG

activity of the healthy arm. Trial rejection was performed using

a semi-automated method based on the variance of the signal

and visual inspection to detect outlier. This was done in order

to ensure that the BCI was only driven by movements of the

phantom arm. In total, we had to remove 396 trials (43 %)

for patient S and 203 trials (22 %) for patient P0. To assess

whether our patients were able to control the BCI, we defined

three measures of performance and computed these for all

sessions. Measure (1) (percentage of trials with video, TWV)

is defined as: Number of trials in which a ”Go”-signal was sent

to the video divided by the total number of trials. This captures

how often the patient was able to overcome the initial hurdle

of starting the video. Measure (2) (video movement per trial,

VPT) is the average time per trial in which the video moved

divided by the total duration of the feedback phase per trial.

The third measure (consecutive video movement, CVM) is

computed as the average consecutive runtime of the video per

trial. Measures 2 and 3 represent the ability of the patient to

modulate his brain activity for a certain amount of time, but

measure 3 targets specifically the issue, whether the patient

is able to keep the feedback device in the desired state (i.e.

the video running). These measures are appropriate for our

BCI with continuous visual feedback, because they reflect the

experiences the users make with the system: Did the video

start to run? How far did the video hand open? Was it running

smoothly or stuttering?

Due to the adaptive stage of the classifier it is possible that

even non task-related activity can start the video. In order

to state whether the patient gained control of the system, i.e.

whether he learned to perform better than chance, we recorded

in total 24 minutes of ECoG data for patient S and 29 minutes

for patient P0 over the course of the two weeks of training

while he was instructed to relax with open eyes. This data

was offline segmented into trials of the same structure as
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the trials of the feedback experiments and processed with the

same signal processing algorithms and parameters as in the

online experiments. The output of a simulated version of the

video feedback device was used to compute the performance

measures described above on the resting data.

F. Statistical analysis

We performed a statistical analysis on the results of the

performance analysis in section II-E. To assess, whether the

performance measure of a single training session was different

from the baseline, we computed the performance measures

for each run of the session and compared this distribution

with the distribution of performance values for the resting

state ECoG data. To do this, we treated each resting state

recording as a single run, thus generating a distribution of

baseline performance values. We performed a Wilcoxon rank-

sum test for each training session and performance measure,

comparing it to the baseline distribution of the measure to

determine whether the medians of baseline and training values

were significantly different.

The significance of the trend over time in the performance data

was estimated with the following procedure: We first computed

the slope of the linear trend by least-squares fit of a line to the

mean of the performance measures for each session. We drew

n values from a gaussian distribution with the same mean and

variance as the set of session means, where n is the number

of sessions (S: n = 5, P0: n = 8) and computed the slope

of the trend for these n random values. We repeated this 105

times and denoted p as the fraction of random trends having

a steeper slope with the same sign as the trend estimated on

the training data.

III. RESULTS

Patient S reached a level of 100 % in measure TWV

(Fig.3 (a)), starting from 71.7% in the first session. From the

second session on, the TWV measure was significantly higher

(p < 0.05) compared to the baseline value of 63.2 ± 13.3%

for unrelated data. A strong significant (p = 0.02) positive

trend (r2 = 0.96) is apparent in the performance data. One

can also find a non-significant (p = 0.06) positive trend (Fig.3

(b)) for measure 2 (r2 = 0.59) with the last three sessions

of BCI training resulting in significantly higher VPT values

than baseline (84.8± 12.1%, 77.0± 19.1% and 67.9± 17.5%

compared to 49.1± 10.6%, p < 0.05). Measure 3 (Fig.3 (c))

showed significantly decreased values for CVM in the last

session (3.0± 1.1 sec compared to 3.8± 0.4 sec) and exhibits

no clear trend over time (r2 = 0.06, p = 0.32).

Patient P0 already had experience with the BCI using EEG

prior to the surgery. In the ECoG sessions, he achieved

perfect scores of 100% in all sessions for measure TWV, all

significantly (p < 0.05) different from the baseline level at

50.34± 20.14% (Fig.4 (a)). VPT values in all sessions varied

around 60%, all being significantly higher than baseline values

of 29.3± 11% (all p < 0.01) (Fig.4 (b)). CVM scores for all

sessions were lower than the baseline of 2.37 ± 0.81 sec but

did not differ significantly from baseline (all p > 0.15) (Fig.4
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Fig. 3. Performance curves of patient S for the three measures TWV (a),
PVT (b) and CVM (c). Solid lines indicate the mean ± standard deviation
of the performance measure per BCI feedback session. Dashed lines in (a)
and (b) show the trend line determined by linear least squares regression.
Dotted lines denote the mean of the performance measure for resting state
ECoG data (baseline). An asterisk (∗) marks sessions where the median of
the performance measure differs significantly (p < 0.05) from the median of
the baseline values.

(c)). There was no significant trend for any measure for patient

P0.

IV. DISCUSSION

The lack of a significant trend in measures VPT and CVM

indicates that our patients were able to learn to reliably

produce the necessary activity in order to start the feedback
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Fig. 4. Performance curves of patient P0 for the three measures TWV (a),
PVT (b) and CVM (c). Solid lines indicate the mean ± standard deviation
of the performance measure per BCI feedback session. Dotted lines denote
the mean of the performance measure for resting state ECoG data (baseline).
An asterisk (∗) marks sessions where the median of the performance measure
differs significantly (p < 0.05) from the median of the baseline values.

(measure TWV), but that they did not learn to lengthen the

amount of time in which they are consecutively producing

the right activity. The significantly increased VPT in the last

three sessions shows that patient S learned to increase the

video coverage of a trial. The significantly decreased CVM

in the last session indicates that this is probably due to the

patient being able to restart the video if it stopped during the

trial, thus resulting in an (on average) reduced consecutive

video movement time. One reason for this could be, that

the patient was not able to learn to perform the opening of

the phantom hand for more than a constant amount of time.

Patient S himself stated that he was not always able to extend

his phantom hand during the whole feedback period of 5

seconds. Instead, he reached the maximum extension point of

his phantom fingers earlier and thus might not have produced

suitable ECoG activations after stopping the movement. This

implies that either a reduction of the length of the feedback

period or a video of a continuously opening and closing hand

might be helpful for future studies. The latter suggestion would

then have to be accompanied by either the patient anticipating

the video movement when deciding on the direction of the

phantom hand movement or by using more sophisticated

signal processing methods to discriminate between an opening

and closing phantom movement from the recorded ECoG

signal and then driving the video application according to the

decoded movement direction. Otherwise, the visual feedback

would not be contingent to the phantom movements and maybe

even counterproductive by confusing the patient.

Patient P0 on the other hand was able to start the video in all

trials and all sessions, indicating that he was able to translate

the control he had acquired with the EEG-based training to the

ECoG-based training. Taken together, he only displayed during

his first EEG session a TWV score that was not significantly

better than chance and improved in all other sessions to an

almost perfect TWV score. Although he also obtained a VPT

score higher than chance, no significant trend was visible and

measure CVT was always near chance.

Although the approach described here for feature selection

and classification has the advantage of requiring only a small

amount of screening data before the first BCI session for

manual parameter selection, more sophisticated classification

algorithms such as support vector machines combined with

automatic feature selection methods might provide a better

decoding of movement intentions than the adaptive linear

classifier employed here. However, manual (pre-)selection of

features might be more appropriate for ”restorative” BCIs

such as the system reported here, because it allows the re-

searcher/clinician to specifically target brain areas and rhythms

as input for training for which improved control might result

in functional improvements for the patient.

V. CONCLUSION

In conclusion we found that two chronic pain patients that

had lost control over their hand, either by amputation or

because of a paralysis induced by a stroke, were able to

quickly gain control over a brain-computer interface using
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spectral modulations of epidural ECoG signals induced by

attempted movements of the impaired or phantom hand and

sustain this control over several sessions. This demonstrates

the feasibility of therapeutic approaches in which intended

movements of strongly impaired patients are translated into

movements of virtual or robotic limbs. Target groups for such

approaches are patients suffering from paralysis or chronic

pain.
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