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Abstract— It is generally accepted that evoked and induced 
activations represent different aspects of cerebral functions 
during an Event Related Potentials (ERP) experiment. 
Independent Component Analysis (ICA) has been successfully 
applied to event related electroencephalography (EEG) to 
decompose it into a sum of spatially fixed and temporally 
independent components that can be attributed to underlying 
cortical activity. A major problem in the application of ICA is the 
stability of estimated independent components. In this paper we 
exploited the split-half approach to assess component stability. 
We used different measures quantifying both phase and energy 
aspects of the ERP, in order to distinguish evoked from induced 
oscillations. We applied these measures to the stable independent 
components derived from a dataset of progressive Mild Cognitive 
Impairment (PMCI) and elderly controls. We found reduced 
energy in the induced theta activity in PMCI subjects, in 
accordance with previous studies. In addition, PMCI subjects 
presented lower phase-locking values and diminished late alpha 
band energy in contrast to controls. 

Keywords- ICA; intertrial coherence measures; time-frequency 
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I.  INTRODUCTION  
Event-related or event-locked activity induced by an 

external or internal stimulus involves both phase-locked and 
non phase-locked rhythmic oscillations. Event-related 
potentials (ERP) encompass the phase-locked (evoked) activity 
at different frequency bands. Recent studies have also revealed 
responses that are not phase-locked to the occurrence of event 
(induced), which vary with stimulus and can interact with the 
ERP. The origins of brain sources relate to multiple task 
conditions and many stimulus types that define topographically 
distinct brain functions, some operating independently and 
some being coupled[1].  

In the above context it is quite important to provide 
efficient means of decomposing the multichannel EEG signal 
into meaningful components, through Independent Component 
Analysis (ICA). A major problem in application of ICA relates 
to the instability of derived components. Another difficulty 
refers to the matching and characterization of the components 
throughout multiple ERP trials. A variety of measures have 
been proposed to characterize the nature of the derived 
components [2, 3]. In this paper, we address these issues and 
describe a complete methodology for characterizing the content 
of a multi-trial ERP experiment. Different approaches have 

been proposed in order to estimate the stability of the ICA 
solution [4, 5]. In this study we are using a split-half approach 
introduced in [6], which allows the derivation of a subset of 
components representing stable, reliable sources. The content 
of each component is expressed in the Time-Frequency (TF) 
domain through the wavelet transform. Furthermore, using 
various measures of ERP activity as well as the recorder 
topography, we analyze the multi-trial content of the 
components and attempt to characterize the brain activations 
that they capture. The obtention of components representing 
stable and well characterized activations enables the extraction 
of quantitative features and their use as markers for assessment 
of pathological conditions. 

We applied the proposed methodology on a dataset 
consisting of control subjects and patients with Progressive 
Mild Cognitive Impairment (PMCI), while they performed a 
visual memory test. The results indicated that the proposed 
component analysis and framework is able to depict the 
synchronized activations during a certain mental task, e.g., 
working memory. As such, it can efficiently reveal and 
quantify both group and individual differences in pathologic 
populations.  

II. METHODS 

A. Independent Component Analysis 
ICA is increasingly used in the field of biomedical signal 

processing. It aims at separating multi-channel biomedical 
signals into their constituent underlying components. ICA has 
been successfully applied on continuous or event-related EEG 
to decompose it into a sum of spatially fixed and temporally 
independent components that can have different spatial 
distribution patterns, which in turn may be directly attributed to 
underlying cortical activity [7-9].  

B. ICA stability 
A major problem in the application of ICA is the stability 

of estimated independent components. Since the ICA 
techniques are stochastic in nature, their results may be 
somewhat different in different runs of the algorithm. In fact, 
many algorithms give different components when run multiple 
times, due to different initial conditions. A closely related issue 
is that the contrast function used in estimation may possess 
many local minima so that ICA may converge to different 
solutions.  Another issue is the uncertainty in the nature of the 
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EEG recorded data. ICA converges towards a solution that 
maximizes component independence, but there is no guarantee 
that the brain sources are completely independent. There are 
also effects of the finite sample size, inducing statistical errors 
in the estimation[6]. In order to address stability issues in 
independent components, we adopt the method described in [6] 
based on a concept similar to bootstrap, in which we essentially 
perform ICA analysis on a large number of possible subsets of 
the data [4]. Rather than using random permutation of the data, 
we perform the analysis twice on 50% of the data. One 
disadvantage of this approach is that it can be biased by the 
data split, as well as by the pairing of Independent Components 
(ICs). Nevertheless, the use of derived stable components for 
the characterization of the ERP content presents the advantage 
that the statistics produced by this analysis can be reproduced 
safely. On top of that, the number of reliable components is 
usually smaller than the number of total extracted independent 
components, so that the assessment of activity of stable 
components becomes faster and easier. 

C. Time-Frequency transforms 
EEG signal analysis provides the advantage of high time 

resolution and, as such, it can deduce information related to 
both local and widespread neuronal activations in short-time 
periods and their evolution time-course. While FFT reveals 
significant frequency information, there is no information 
concerning the temporal distribution of those frequencies. A a 
highly non-stationary signal with composing frequencies 
changing through time, EEG cannot be fully supported by the 
stationary nature of FFT.  

Wavelet approaches decompose the signal into constituent 
time–frequency (TF) ranges of energy, based on the notion of 
scale applied on a set of basis functions. The application of 
wavelet transforms in TF analysis is guided by the tradeoff 
between frequency and time, since wavelets compute small 
scale (high-frequency) intervals with shorter time windows and 
large scale regions (low-frequency) with longer time windows. 
As a result, they resolve higher scale energy with high 
resolution in time but not in frequency. In this study we use 
wavelets to implement TF decompositions of EEG content 
using the complex Morlet wavelet functions[10]. 

III. INTERTRIAL SYNCHRONIZATION MEASURES 
The similarity or consistency of components across trials 

has been initially addressed in ERP studies either through the 
average signal across trials or the spectral energy (SE) of the 
inter-trial average.  We define the consistency measures on the 
TF representation of a component in the wavelet domain [11]. 

A. Phase Intertrial Coherence 
In order to quantify phase locked coherence along the trials, 

we use a variant of the inter-trial coherence (ITC) measure [11] 
which reflects the phase-locked consistency among trials and is 
derived from the analysis of individual trials TF maps at each 
specific channel/ component. It takes under consideration only 
the phase of the signal in each trial, so that any phase-locked 
activity of either large or small amplitude has the same effect. 
In order to engage the amplitude along with the phase of each 
trial, the phase inter-trial coherence (PIC) is defined as: 

CPICሾk, nሿ ൌ |∑ Xሾ୩,୬ሿ |∑ |Xሾ୩,୬ሿ|  1   (1) 

where Xi[k,n] denotes the frequency coefficient at the i-th trial 
and the k-th frequency tick. Equality holds if and only if all 
trials involve the same signal with the same phase, but each 
trial contributes to the measure according to its amplitude. The 
PIC measure performs just scaling, preserving the structure of 
the cloud of coefficients (amplitude and phase), so that it 
measures uniformity on a mixed product term involving both 
the angle and amplitude of coefficients. Trials of little 
amplitude in a frequency band affect the ITC measure 
identically as trials with significant amplitude activity, but this 
is not true for PIC which is proportionally affected by the 
amplitude of phase-locked trials. 

B. Phase-shift Intertrial coherence 
For the quantification of event-related but not phase-locked 

activity, we can use a measure based on the energy of single-
trial decompositions which highlights the frequency bands of 
increased energy in all trials. More specifically, the phase-shift 
intertrial coherence (PsIC) is defined as: CPୱICሾk, nሿ ൌ ∑ |Xሾ୩,୬ሿ| మ୫ୟ୶ౡ, ∑ |Xሾ୩,୬ሿ| మ  1 (2) 

where equality implies the same magnitude of X[k,n], even 
with different shifts at each trial[11]. Complementary to PIC, 
the PsIC map reflects the non-phase-locked activity, which 
implies similar structure of the signal but without phasic 
coherence across trials. PsIC is a variation of the energy 
measure used in Event-Related Desynchronization/ 
Synchronization (ERD/ERS), using only the post-event energy. 

C. Event-Related Synchronization and Desynchronization 
ERD/ERS represent a mean decrease/ increase of event-

related power relative to a baseline [12]. In our study, the 
baseline is computed per subject and corresponds to the 
average power over all trials, time instances and frequency 
points considered pre-stimulus. The reasoning behind this 
measure implies that there exist pre-stimulus brain sources that 
change their post-stimulus energy status due to event 
presentation. In the same line, the PsIC measure reflects 
persistent activity in all trials without baseline comparison; a 
frequency band active in all trials would have a PsIC close to 1. 
Thus, it can be used in conjunction with the ERD/ERS measure 
in order to evaluate event-related changes in ongoing 
oscillations. 

IV. METHODOLOGY 
Significant effort has been dedicated to the analysis of EEG 

channel signal content. Prominent approaches focus on specific 
frequency bands and examine the ERP (for evoked activity) 
and the ERD/ERS measures (for induced activity)[9, 13]. 
Furthermore, by subtracting the mean signal (ERP) from each 
single trial, the induced oscillations can be highlighted [13].  

In our study we attempt to explore an alternative approach, 
which considers all involved activities simultaneously. We 
consider independent components instead of channels in order 
to decouple EEG signals, mixed due to volume conduction 
effects. Using the split-half approach, we derive a subset of the 
available components representing stable, reliable sources. 
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Then, we consider the TF activity maps to study the different 
types of activations involved in each component. These 
measures do not integrate activity over trials, but rather reflect 
the synchronization structure of activity over trials. Thus, they 
do preserve the nature of activity they are intended to quantify. 
Finally, we isolate regions of important activation in each 
measure and compute population statistics, to derive robust 
markers for population comparison and assessment of disease 
effects. 

In sum, we use the split-half approach described in [6] to 
extract stable independent components of each subject. Next, 
we apply the inter-trial measures and evaluate the activations 
taking place. Finally, statistics are extracted from components 
with significant activity and group comparison is performed. 

A. Selection of components and segmentation of significant 
TF regions. 
Selecting individual components that capture interesting 

brain activity is not a trivial task. Using the measures of PIC 
and PsIC we initially compute their average values per band, 
which can be plotted and compared in a single diagram for all 
derived components. By comparing the overall power in this 
plot, we can identify those components that express significant 
activation lasting for a significant time interval, justified 
through the integration over time. Thus, for each component 
we obtain a global value of each measure, as a single average 
value for each band. Components presenting activity above a 
certain threshold are selected for further visual evaluation. For 
the detailed analysis of selected components, we then consider 
the two-dimensional TF maps of the three measures that reflect 
the component consistency (in energy and/or phase) along 
trials.  

Using this selection method we are able to initially select 
interesting components that contain both phase and non phase-
locked activity relevant to the task. We prefer to use a 
conservative threshold on the average measures, i.e. the upper 
quartile of all values, in order to capture components 
presenting partial phase-locked and non-phase locked activity, 
that otherwise would be discarded. Then each component is 
visually evaluated and characterized according to the values of 
the measures (taking under consideration topography, latency 
and frequency band of activation).  

Visual inspection of the selected components confirms that 
the selected components present relevant activations. Finally, 
for each time-frequency map we compute the histogram of its 
values and use the upper quartile in order to derive a threshold 
for defining significant regions in the map. Then we calculate 
the center mass of the significant region in order to classify the 
central band and latency in which the activation occurs. Based 
on this threshold, we segment regions of interest in the 
measures and derive their mean time, frequency and spectral 
power. For each subject, we group the stable components that 
present significant activation in each measure (power of the 
mean signal, PIC, PsIC or ERD/S) according to the band in 
which the activation takes place. 

B. Dataset Description 
The dataset used was provided by the Clinical 

Neurophysiology and Neuroimaging Unit, University Hospitals 

of Geneva (Switzerland). All individuals in the control group 
were screened using extensive neuropsychological testing to 
confirm the absence of cognitive deficits [13]. The elderly 
controls group used in this study consists of 12 subjects. MCI 
cases were recruited in a large acute and intermediate care 
geriatric hospital. The same clinical and neuropsychological 
screening as for elderly controls was used [13]. Fifty five 
percent of the original MCI cases demonstrated significant 
cognitive decline after 1 year follow-up and constituted the 
progressive MCI group (mean age: 82.8 ± 5.4 years) [13]. The 
final PMCI group used is this study consisted of 14 subjects. 
Detailed description of the experimental conditions and data 
acquisition can be found in [14]. 

All trials from the detection task (0-back) were used in our 
analysis and for each trial, we analyzed a time portion starting 
1000ms before visual stimulus presentation and lasting for 
3000ms post-stimulus. The vertical line in the TF illustrations 
of Figure 1 indicates stimulus onset; the vertical axis spans 
frequencies from 1Hz to 14Hz in a logarithmic scale. 

V. RESULTS 

A. Control Subjects 
Elderly control subjects show phase-locked activity in 

delta, theta and alpha bands in the period 200 to 300ms after 
the event. Theta and alpha phase-locked activity precedes the 
one in delta band for all components. In essence, delta band 
seems to spread in a larger temporal interval following the 
event. More specifically, alpha and theta phase-locked activity 
occurs at around 200-300ms, whereas delta evoked 
components peak at 330ms after the event. All phase-locked 
theta and delta components present a power increase compared 
to pre-stimulus baseline, which appears as an increase in the 
ERD/ERS measure. In many cases, delta and theta activations 
are coupled into a single component (Figures 1a and 1d). These 
results are compatible with other findings indicating power 
increase in theta and delta bands associated with attention and 
cognitive processing, respectively [15]. In addition, early 
evoked alpha activity was reported in other studies related to 
stimulus perception [16]. 

Theta band induced activity was observed 1200 ms after the 
event. Since the PsIC measure is normalized according to the 
maximum energy, which often appears with increased in delta 
band, we evaluated theta and alpha activity separately from 
delta. There was an increase in the power of the theta post-
stimulus induced activity, as expressed in the ERD/ERS 
measure. An example can be viewed in Figure 1d. As induced 
theta we treat the components that do not present significant 
PIC measure in the same region where strong PsIC is 
identified. Theta induced response has been associated with 
working memory processes in many studies [16]. 

Alpha components generally display activity in the time 
period of 250 ms to 350 ms after the event. In fact, three types 
of alpha activity can be distinguished. a) Some alpha 
oscillatory activity synchronizes its phase right after the event 
and presents high phase locking coherence at 200 ms, just  
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before power desynchronization. Example is shown in Figure 
1a (early alpha component). The phase locking effect in alpha 
oscillatory activity does not necessarily display significant 
increase in power compared to pre-stimulus baseline. Phase 
locking without power increase appears in Figure 1b, revealing 
phase synchronization of ongoing oscillations after the event. 
Alternatively, the power increase in Figure 1c indicates a 
slightly different, additive nature of these components that 
contribute to an evoked part of ERP.  b) Some pre-stimulus 
alpha oscillatory activity, showing power decrease after the 
event but no phase locking before or after the event, is present 
in control components as in Figure 1d. This kind of activity, 
which recovers after some time, forms the main contribution to 
the alpha desynchronization in the ERD effect. c) Finally, there 
exist additive non (or partially) phase-locked alpha activations 
after 1000 ms, such as in Figure 1a and 1b (late alpha 
activation), which also display an instantaneous power increase 
in the ERD/ERS measure.   

Alpha desynchronization (ERD) is known to correlate with 
memory performance in normal subjects [17]. In addition, early 
alpha phase-locking has been reported to relate to attention and 
perception of the stimulus. Higher alpha phase locking seems 
to be related to good perception and memory performance in 
normal subjects [16]. Our findings support such reports, since 
control subjects present alpha phase-locked activity and strong 

alpha ERD after the event. Finally, late alpha induced 
oscillations were found in control subjects after the 
desynchronization effect. This late alpha induced activity can 
be seen in Figure 1a and Figure 1b and is associated with 
working memory activation as a response to the presented 
target [17].  

In terms of spatial localization of the activations, 
components that present strong delta phase-locked activity 
exhibit posterior topography (Figure 1a and 1b). Theta phase-
locked components present parietal and occipital topography as 
can be observed in Figure 1b. Theta induced activity displayed 
mainly frontal topography as in Figure 1c. Alpha early phase-
locked activity (Figure 1a, 1b) appears with posterior 
distribution, whereas late additive activation shows frontal 
localization. Induced alpha oscillations contributing to alpha 
ERD displayed mainly a central topography (Figure 1d), 
similar to previous studies. 

B. PMCI Subjects 
Statistical results for this group are presented in Table 1b. 

Progressive MCI subjects display decreased phase locking in 
delta and theta bands. Activations follow the same pattern as in 
controls, with delta band presenting later evoked oscillations. 
Theta phase-locked activations occur at 200 ms post-stimulus 
and precede delta band activations that occur on average at 340 
ms post-stimulus. Induced theta activity is significantly  

Control subjects 

a 

b 

c 

d 

PMCI  subjects 

  

e 

   

f 

  

g 

Figure 1:  Rows a-d indicative maps of activity measures for Control subjects. Rows e-g indicative maps of activity measures for PMCI patients. First column 
displays the spectral energy of the mean signal. Second , third and fourth  columns display PIC, PsIC and ERD/ERS measures, respectively.  Last column presents 
the component topography based on the mixing vector of the corresponding IC. For PIC and PsIC measures legend is scaled from 0 to 1, while ERD/ERS legend 
represents percentage of increase with red shades and percentage of decrease with blue shades. 
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reduced in PMCI as compared to control subjects. Delta and 
theta power is significantly lower in PMCI than in control 
subjects. This finding is in agreement with other studies that 
attribute theta as the main band related to memory functions. 
Reduced theta phase-locking and power in PMCI patients can 
be attributed to the alteration of memory functions due to MCI 
pathology[13].  

A major difference between PMCI and control subjects is 
the absence of alpha phase-locked activations in most PMCI, 
resulting in reduced power and phase locking values as 
compared to controls. This is in line with studies that report 
lower peak of alpha power in PMCI and Alzheimer’s disease 
(AD) patients. Furthermore, induced alpha activations (Figure 
1e, 1f, 1g) formulate the ERD with little or no power 
reorganization after the event in contrast to controls. This 
results in significantly higher energy in late alpha regions of 
the PsIC plots (late alpha reactivity) in control subjects as 
compared to PMCI. This is in line with findings suggesting that 
higher frequencies are sensitive to mental decline, associating 
late alpha activity with memory processes [18]. Another 
important finding is that ERD of alpha induced oscillations 
lasts longer in PMCI compared to controls (about 300ms in 
total). This could be explained by the fact that the duration of 
alpha ERD response increases with increasing memory load. 
Memory deficits in PMCI subjects would result in greater 
memory load, resulting in increased duration of alpha 
ERD[19]. This is also in agreement with the literature, where 
enhanced ERD has been observed with increased memory load.  

The topographical distribution of the different activations is 
similar in PMCI and controls. Theta phase-locked activations 
present mostly a posterior topography (Figure 1e, 1f), as delta 
phase-locked activity. Theta induced activity, expected in more 
frontal locations, is much weaker in PMCI than in controls and 
often appears together with induced delta activity at more 
central location (Figure 1f). PMCI alpha ERD activity is 
weaker than in controls with no late recovery, being shifted to 
more posterior location (Figure 1g). 

VI. CONCLUSSIONS 
During a memory task, different brain mechanisms are 

activated that allow recognizing and processing of the 
incoming information. We analyzed a 0-back, visual detection, 
working memory experiment performed by elderly control and 
PMCI subjects.  

Phase-locked activity that can be attributed to stimulus 
perception and attention was detected in both groups. More 
specifically, phase-locked delta, theta and alpha activations 
were found in the period following stimulus presentation in 
both groups. They presented a parietal topography, being 
affected by the visual nature of the stimulus. This is in line with 
reports suggesting that the superposition of phase-locked 
activity in delta to alpha frequencies contribute to the 
generation of the average ERP[16]. Delta and theta phase-
locked activations were accompanied by a power increase, 
reflected in the ERD/ERS measure in the specific bands, 
supporting their stimulus-related characteristics [15, 20].  

As compared to controls, PMCI patients presented reduced 
phase-locking in theta/ delta bands without significant power 
differences. This can be attributed to the limited capacities of 
PMCI subjects to attention/ cognition, inducing response 
variations from trial to trial. Similarly, alpha band presented 
reduced phase-locking, accompanied by reduced energy. This 
could be related to deficits in stimulus processing, orientation 
and attention in PMCI, higher frequency bands tending to be 
more sensitive to mental decline[18]. 

Theta induced oscillations (as expressed by the PsIC 
measure with no PIC values) were found at around 1200 ms 
after the stimulus, and also presented power increase (ERS). 
PMCI subjects showed reduced theta induced power compared 
to controls, that could be attributed to the alteration of their 
attention and memory functions[13]. 

Induced alpha activity presented significant power decrease 
following the stimulus, expressed as ERD, which was found to 

Table 1b. Statistics for  Phase-Shift activity 

Band Controls PsIC PMCI PsIC P-Value: a=0.05 

Delta 

time= 629 

freq = 3 

PsIC energy = 550 

time = 474 

freq =3.2 

PsIC energy = 529 

 

 
No signif diff. 

Theta 

time = 1249 

freq =6 

PsIC energy = 810 

time = 1266 

freq = 4.2 

PsIC energy = 470 

  

 

P = 0.008( Control ) 

Early 

Alpha 

time = 229.70 

freq =12.12 

PsIC energy = 322  

time = 302 

freq =9.8 

PsIC energy  = 307 

 

 

No signif diff. 

Late 
Alpha 

time = 1036 

Freq = 11.3 

PsIC energy = 267 

time = 1300 

Freq = 10.5 

PsIC energy = 185 

 

 

p=0.032( Control )  

Table 1a. Statistics for phase locked activity 

Band Controls PIC PMCI PIC P-Value: a=0.05 

Delta 

time= 473 

freq =3.4 

PIC energy = 349  

PIC  values =  0.60 

time = 339.5 

freq =3.0 

PIC energy = 303 

PIC  values  = 0.51 

 

 

No signif diff. 

p=0.0216(Control) 

Theta 

time = 236 

freq =6 

PIC energy = 510 

PIC  values = 0.72 

time = 269 

freq = 5.2 

PIC energy  = 490 

PIC  values  = 0.55 

 

 

No signif diff. 

p=0.004( Control ) 

Alpha 

time = 296 

freq =11.3 

PIC energy = 205 

PIC  values = 0.65 

time = 193 

freq =10.55 

PIC energy = 105 

PIC  values = 0.47 

 

 

p =0.009( Control ) 

p =0.031( Control) 
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be significantly larger and of longer duration in PMCI patients. 
Alpha ERD is known to correlate with memory performance 
and mental activation. Increased alpha ERD in PMCI subjects 
suggests the use of increased cognitive resources for 
completing the task[19]. Increased ERD has been also reported 
in patients with dementia and AD in other studies[19]. Alpha 
induced oscillations presented a late ERS in control subjects 
which was reduced or completely absent in PMCI patients. 
Such late alpha induced activity is related to working memory 
maintenance for further tasks[17]. The lack of alpha power 
increase in PMCI patients could be related to memory deficits 
and can also be associated with the reduced energy of late 
induced theta, the later relating to reduced engagements of 
working memory[13]. 

Our results are in agreement with and extend a previous 
study on the same dataset [13], where the authors reported 
evoked theta activity at posterior locations while induced theta 
activity was located in frontal regions. Furthermore, induced 
theta emerged later than evoked theta activity. Global theta 
energy did not reveal any differentiation between the two 
groups because of the mixed evoked and induced activities. In 
contrast, a significant reduction of induced theta power was 
found. These findings are in agreement with our results, as we 
found no significant difference in the evoked theta energy 
between the two groups, but detected significant decrease in 
theta induced energy. The PsIC measure shows that induced 
delta lags in time the evoked theta activation, expressed by the 
PIC measure. Furthermore, the derived topography in our 
analysis agrees with that of [13] for both induced and evoked 
theta. 

Our methodology enables the separation of evoked and 
induced activations that can be observed and evaluated in 
parallel, in terms of their activation content and topography. In 
addition to the study of theta activation as in[13], our approach 
enables the analysis of other bands, such as alpha, where we 
also detect evoked and induced activity of distinct nature and 
topography. Another advantage is that we make no 
assumptions about the generation and manifestation of the 
evoked activity. Removing the mean activity in a specific band, 
as in [13], makes use of the assumption that the evoked 
activation is generated in each trial at the same latency. Many 
studies suggest that phase-locked activations emerge with some 
jitter in latency from trial to trial and are affected by fatigue 
and level of attention[2]. This suggests that removing the mean 
activation in a certain frequency band leaves residual energy 
which cannot be anticipated beforehand. 

We explored a recent method for evaluating the stability of 
the ICA components. Through the use of activation measures 
that summarize activity over trials in various ways, we were 
able to study simultaneously many frequency bands and types 
of activation (evoked or induced), with clear distinction of 
time, topography, and frequency signature. The proposed 
methodology forms an alternative technique that can be used to 
complement previous studies and derive new associations of 
brain activity. 
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