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Abstract—Selecting predicitve gene pools from thousands of
gene expression values is one of the main tasks in microarray data
analysis. For this purpose multivariate techniques have proven
much better, in terms of predicitve value and biological relevance,
than univariate techniques as they are able to capture relevant
relationships and interactions between genes. An additional goal
for gene-expression profiling is finding models that, besides being
predictive, are also understandable so as they can provide some
insight on the underlying mechanisms. Models based on fuzzy
logic might, potentially, exhibit both characteristics. However, ac-
curacy and interpretability are usually contradictory objectives,
and one must accept a trade off between them. Indeed, literature
shows that the approaches based on fuzzy logic may be divided
in two groups: accurate but complex models (i.e, with many rules
using many variables per rule) on one hand, and models with
only few short rules (thus, interpretable) but exhibiting limited
accuracy. We present in this paper the application of Fuzzy
CoCo, our cooperative coevolutionary fuzzy modelling approach,
in order to deal efficiently with the accuracy-interpretability
tradeoff. Fuzzy CoCo is able to find very compact fuzzy models,
in terms of number of rules and number of variables per
rule, while still exhibiting high predictive power. To validate the
performance of our approach, we tested Fuzzy CoCo on four
known data sets addressing each one a form of cancer: Leukemia,
colon, lung, and prostate. We compared our results–in terms of
maximum number of rules, number of variables per rule, and
accuracy–with those of other similar works (i.e., based on fuzzy
logic). Our models reached similar or better accuracy while being
considerably smaller.

I. INTRODUCTION

Microarray techniques allow measuring thousands of gene-
expression values in a single experiment. Multiple microarray
experiments, performed generally to investigate a given bio-
logical question, result in huge sets of data to be processed
and analyzed. In order to make sense out of these complex
data-sets, it is essential to count on methods that allow
selecting relatively small subsets of genes associated to cell
functions. In this context, many modeling techniques have
been applied to microarray data, among which a plethora of
univariate approaches, which test one feature at a time in order
to discriminate individually-relevant variables. The top most
significant features are then used to develop statistical models.
In contrast, multivariate approaches consider the existence
of synergies between genes; in other words, the fact that it
may exist interactions between them that influence a given

biological outcome rather than considering each gene’s behav-
ior as isolated. Although several multivariate methodologies
have been successfully applied, there are still many remaining
challenges [17].

In this work we address challenges related to the inter-
pretability of the models, as very often they include a large
number of variables and complex relationships that make
difficult their interpretation. Fuzzy modeling constitutes a good
approach to tackle such a challenge as it allows producing
small, multivariate, and interpretable models. Algorithms im-
plementing fuzzy modeling have proven worthwhile on nu-
merous problems involving gene-expression data analysis [2],
[5], [6], [8], [9], [11], [16], [21], [22]. Nevertheless, many
reported approaches presents models with numerous and/or
large rules, making difficult their interpretation. Conversely,
approaches that generate models with few and/or short rules
present lower accuracy than the former.

In order to find more compact models, in terms of number
of rules and variables per rule, we present in this work the
use of our Cooperative Coevolutionary Fuzzy approach (Fuzzy
CoCo) [13]. Our specific goal is to take advantage of the
characteristics of Fuzzy Coco creating very compact fuzzy
models and using it to find models with a maximum of three
rules and three variables per rule with a high discriminative
power. For this aim we tested Fuzzy CoCo on a target of four
known datasets: Leukemia (Golub et al. [3]), colon cancer
(Alon et al. [1]), lung cancer (Gordon et al. [4]), and prostate
cancer (Singh et al. [18]). Finally, we compare our results (in
terms of maximum number of rules, number of variables per
rule and accuracy) with these reported by other works using
fuzzy logic based approaches.

This work is organized as follows: Section II introduce
the Fuzzy CoCo approach and its advantages evolving very
compact systems. Section III explain the data set used, the
fuzzy modeling process, and the results we obtained. Finally,
we discuss these results and we propose some tracks that could
be pursued for improving and/or extending the reach and the
relevance of the modeling approach.
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II. SYSTEM AND METHODS

A. Coevolutionary Algorithms

In the simplified models of evolution we consider indi-
viduals belonging to a single species, i.e., sharing the same
genetic encoding and reproducing with each other. We assume
this species evolves in isolation, in an almost unchanging
environment. In nature, species live in the niches afforded
by other species, modifying themselves and the environment
and being affected by such modifications. Over time, the
evolution of many species has been influenced by interactions
with other species. Species that have mutually influenced one
another’s evolution are said to have coevolved. For instance,
predator-prey interaction constitutes an example of competitive
coevolution where the survival of individuals of one species
requires the death of individuals from other species.

Coevolution has served as inspiration to propose a family of
evolutionary algorithms capable of surmounting some of the
limitations encountered by evolutionary computation. These
coevolutionary algorithms deal particularly well with increas-
ing requirements of complexity and modularity while keeping
computational cost bounded.

Fuzzy CoCo applies cooperative coevolution to tackle the
fuzzy-modeling problem.

B. Coevolutionary Computation

Inspired by natural coevolution, artificial coevolution refers
to the simultaneous evolution of two or more species with cou-
pled fitness. Such coupled evolution provides some advantages
over non-coevolutionary approaches that render coevolution
an interesting alternative when confronting certain problems.
Among these advantages, we can mention :

∙ Coevolution favors the discovery of complex solutions
whenever complex solutions are required.

∙ It helps preserve genetic diversity.
∙ It is suitable for parallel implementation.

In a competitive-coevolutionary algorithm, the fitness of an
individual is based on direct competition with individuals of
other species, which in turn evolve separately in their own
populations. Increased fitness of one of the species implies a
diminution in the fitness of the other species. This evolutionary
pressure tends to produce new strategies in the populations
involved so as to maintain their chances of survival. This “arms
race” ideally increases the capabilities of each species until
they reach an optimum.

C. Cooperative Coevolution

In nature, many species have developed cooperative interac-
tions with other species to improve their survival. Cooperative
coevolutionary algorithms involve a number of independently
evolving species which together form complex structures,
well-suited to solve a problem. The fitness of an individual
depends on its ability to collaborate with individuals from
other species. In this way, the evolutionary pressure stemming
from the difficulty of the problem favors the development of
cooperative strategies and individuals. As in nature the species

are genetically isolated because they evolve in separate pop-
ulations, because their genomes are genetically incompatible,
or both.

D. A general model for cooperative coevolution

Potter and De Jong [14], [15] developed a general model
for cooperative coevolution. Their hypothesis was that explicit
notions of modularity are necessary in order to evolve complex
structures in the form of interacting coadapted subcomponents.

Their model has the following characteristics:
1) Each species represents a subcomponent of a potential

solution.
2) Complete solutions are obtained by assembling repre-

sentative members of each of the species (populations).
3) The fitness of each individual depends on the quality of

(some of) the complete solutions it participated in, thus
measuring how well it cooperates to solve the problem.

4) The evolution of each species is controlled by a separate,
independent evolutionary algorithm.

5) Given an ensemble of conditions, the number of species
should itself be adapted by a mechanism of birth and
death of species.

Figure 1 shows the general architecture of Potter’s coopera-
tive coevolutionary framework, and the way each evolutionary
algorithm computes the fitness of its individuals by combining
them with selected representatives from the other species. The
representatives can be selected via a greedy strategy as the
fittest individuals from the last generation.
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Fig. 1. Potter’s cooperative coevolutionary system. The figure shows the
evolutionary process from the perspective of Species 1. The individual being
evaluated is combined with one or more representatives of the other species
so as to construct several solutions which are tested on the problem. The
individual’s fitness depends on the quality of these solutions.

Results presented by Potter and De Jong [15] show that
their approach addresses adequately issues like problem de-
composition and interdependencies between subcomponents.
The cooperative coevolutionary approach performs as good
as, and sometimes better than, single-population evolutionary
algorithms. Finally, cooperative coevolution usually requires
less computation than single-population evolution as the pop-
ulations involved are smaller, and convergence—in terms of
number of generations—is faster.
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E. Fuzzy CoCo

Fuzzy CoCo is a Cooperative Coevolutionary approach to
fuzzy modeling wherein two coevolving species are defined:
database (membership functions) and rule base. Fuzzy CoCo
is conceived to allow a high degree of freedom in the type
of fuzzy systems it can design in order to allow the user to
manage the trade-off between performance and interpretability.

Fuzzy modeling can be thought of as two separate but in-
tertwined search processes: (1) the search for the membership
functions (i.e., operational parameters) that define the fuzzy
variables, and (2) the search for the rules (i.e., connective
parameters) used to perform the inference.

Fuzzy modeling presents several features which justify
the application of cooperative coevolution: (1) The required
solutions can be very complex, since fuzzy systems with a
few dozen variables may call for hundreds of parameters
to be defined. (2) The proposed solution—a fuzzy inference
system—can be decomposed into two distinct components:
rules and membership functions. (3) Membership functions are
represented by continuous, real values, while rules are repre-
sented by discrete, symbolic values. (4) These two components
are interdependent because the membership functions defined
by the first group of values are indexed by the second group
(rules).

Consequently, in Fuzzy CoCo, the fuzzy modeling problem
is solved by two coevolving, cooperating species. Individuals
of the first species encode values which define completely all
the membership functions for all the variables of the system.

Individuals of the second species define a set of rules of the
form:

if (𝑣1 is 𝐴1) and . . . and (𝑣𝑛 is 𝐴𝑛) then (𝑜𝑢𝑡𝑝𝑢𝑡 is 𝐶),
where the term 𝐴𝑖 indicates which one of the linguistic labels
of fuzzy variable 𝑣 is used by the rule. For example, a valid
rule could contain the expression

if . . . and (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 is 𝑊𝑎𝑟𝑚) and . . . then . . .
which includes the membership function 𝑊𝑎𝑟𝑚 whose defin-
ing parameters are contained in the first species.

F. The algorithm

The two evolutionary algorithms used to control the evolu-
tion of the two populations are instances of a simple genetic
algorithm [20]. Figure 2 presents the Fuzzy CoCo algorithm
in pseudo-code format. The genetic algorithms apply fitness-
proportionate selection to choose the mating pool (essentially,
probabilistic selection according to fitness), and apply an elitist
strategy with an elitism rate 𝐸𝑟 to allow some of the best
individuals to survive into the next generation. The elitism
strategy extracts 𝐸𝑆 individuals—the so-called elite—to be
reinserted into the population after evolutionary operators have
been applied (i.e., selection, crossover, and mutation). Note
that the elite is not removed from the population, participating
thus in the reproduction process. Standard crossover and
mutation operators are applied [10]: crossover between two
genomes is performed with probability 𝑃𝑐 by selecting at
random (with uniform probability) a single crossover point and
exchanging the subsequent parts to form two new offspring;

if no crossover takes place (with probability 1− 𝑃𝑐) the two
offspring are exact copies of their parents. Mutation involves
flipping bits in the genome with probability 𝑃𝑚 per bit. The
condition under which the algorithm terminates is usually
satisfied either when a given threshold fitness is attained, or
when the maximum number of generations, 𝐺𝑚𝑎𝑥, is reached.

begin Fuzzy CoCo
g:=0
for each species S

Initialize populations 𝑃𝑆(0)
Evaluate population 𝑃𝑆(0)

end for
while not done do

for each species S
g:=g+1
𝐸𝑆(𝑔) = Elite-select[𝑃𝑆(𝑔 − 1)]
𝑃 ′
𝑆(𝑔) = Select[𝑃𝑆(𝑔 − 1)]

𝑃 ′′
𝑆 (𝑔) = Crossover[𝑃 ′

𝑆(𝑔)]
𝑃 ′′′
𝑆 (𝑔) = Mutate[𝑃 ′′

𝑆 (𝑔)]
𝑃𝑆(𝑔) = 𝑃 ′′′

𝑆 (𝑔) + 𝐸𝑆(𝑔)
Evaluate population 𝑃𝑆(𝑔)

end for
end while

end Fuzzy CoCo

Fig. 2. Pseudo-code of Fuzzy CoCo. Two species coevolve in Fuzzy CoCo:
membership functions and rules. The elitism strategy extracts 𝐸𝑆 individuals
to be reinserted into the population after evolutionary operators have been
applied (i.e., selection, crossover, and mutation). Selection results in a reduced
population 𝑃 ′

𝑆(𝑔) (usually, the size of 𝑃 ′
𝑆(𝑔) is ∥𝑃 ′

𝑆∥ = ∥𝑃𝑆∥ − ∥𝐸𝑆∥).
The line “Evaluate population 𝑃𝑆(𝑔)” is elaborated in Figure 3.

G. Fitness evaluation

A more detailed view of the fitness evaluation process is
depicted in Figure 3. An individual undergoing fitness evalua-
tion establishes cooperations with one or more representatives
of the other species, i.e., it is combined with individuals from
the other species to construct fuzzy systems. The fitness value
assigned to the individual depends on the performance of the
fuzzy systems it participated in (specifically, either the average
or the maximal value).

Representatives, or cooperators, are selected both fitness-
proportionally and randomly from the last generation in which
they were already assigned a fitness value (see Figure 2). In
Fuzzy CoCo, 𝑁𝑐𝑓 cooperators are selected probabilistically
according to their fitness, favoring the fittest individuals, thus
boosting the exploitation of known good solutions. The other
𝑁𝑐𝑟 cooperators are selected randomly from the population to
represent the diversity of the species, maintaining in this way
exploration of the search space.

III. IMPLEMENTATION

A. Implementation and data sets

In order to compare our modeling results with those ob-
tained by other authors we selected several benchmark data
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Fig. 3. Fitness evaluation in Fuzzy CoCo. (a) Several individuals from
generation 𝑔 − 1 of each species are selected both randomly and according
to their fitness to be the representatives of their species during generation
𝑔; these representatives are called “cooperators.” (b) During the evaluation
stage of generation 𝑔 (after selection, crossover, and mutation—see Figure 2),
individuals are combined with the selected cooperators of the other species
to construct fuzzy systems. These systems are then evaluated on the problem
domain and serve as a basis for assigning the final fitness to the individual
being evaluated.

sets, namely: (i) the well-known leukemia data studied by
Golub et al. [3]. In this dataset, there are 38 observations,
each of which is described by the gene expression levels of
7129 genes and a class attribute with two distinct labels: acute
myeloid (AML) and lymphoblastic leukemia (ALL); (ii) the
colon cancer data set used by Alon et al. [1]. This data set
contains 62 observations. There are 40 tumor samples, and
22 normal samples. From about 6000 genes represented in
each sample in the original data set, only 2000 genes were
selected by Alon et al.; (iii) the prostate cancer data set studied
by Singh et al. [18] containing 52 prostate tumor samples
and 50 non-tumor prostate samples with a total number of
genes of 12600; (iv) the lung cancer dataset reported by
Gordon et al. [4], which contains samples of malignant pleural
mesothelioma (MPM) and adenocarcinoma (ADCA) of the
lung, and consists of 181 tissue samples (31 MPM, 150
ADCA). Each sample is described by 12,533 genes.

B. Modeling goals

The modeling problem tackled in this work involves dis-
criminating two classes for each of the aforementioned four
data sets based on their gene-expression profiles. For each
data set, it admits a relatively high number of variables and
consequently, a huge search space. An initial, exploratory
number of evolutionary fuzzy modeling runs, and the sub-
sequent analysis showed that many different models were

capable of satisfactorily solving the pursued discrimination
problem. Furthermore, we observed that there exist many,
radically-different, pools of genes that may lead to highly
accurate models with very few rules and variables.

C. Evolutionary parameters

The main parameters used are shown in Table I

TABLE I
Evolutionary-fuzzy modeling setup for the data-set

Parameter Values

Population size 100
Maximun generations 300
Crossover probability 0.8
Mutation Probability 0.025 for each bit in the genome
Elitism 5 per individual population
Maximum number of
variables per rule 1 to 3
Maximum number of
rules per system 1 to 3

D. Fitness function

The fitness function combines three criteria: (1) The sen-
sitivity, computed as 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (2) The specificity,
computed as 𝑇𝑁/(𝑇𝑁+𝐹𝑃 ) (3) The root mean square error
(rmse) between predicted and actual values.

The sensitivity and specificity are the most important mea-
sures of performance. We used them in combination instead
of the accuracy since we can avoid some balancing problems
if the number of cases for each class is not equal. The rmse is
used to cause a fitness difference among models with similar
classification performance and also to move away prediction
from the threshold value. The fitness value assigned to an
individual is :

𝑤1 ∗ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑤2 ∗ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 + 𝑤3 ∗ 2−𝑟𝑚𝑠𝑒

𝑤1 + 𝑤2 + 𝑤3

, where 𝑤1 = 𝑤2 = 1.0 and 𝑤3 = 0.2.

E. Experimental modeling setup

Bootstrapping was used for validating the performance of
the obtained fuzzy models. We performed resampling with
replacement from the original data in order to create the train-
ing set on which Fuzzy CoCo tested the candidate solutions.
Resampling was applied until there remained only 37% of all
cases that were not included in the training set. This 37%
of unseen cases were used, as a validation set, to test the
performance of the best fuzzy model emergeing out of a given
evolutionary run. We repeat this operation 300 times for each
one of the nine model configurations tested (i.e., one to three
rules times one to three variables per rule). In this way, we
conducted a total of 2700 modeling runs obtaining the same
number of candidate models.
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IV. RESULTS AND DISCUSSION

A global summary of the results obtained for accuracy,
sensitivity and specificity are presented in Figures 4, 5 and 6
respectively. Table II shows the results obtained when mod-
eling with Fuzzy CoCo alongside, for comparison purposes,
with those reported in other papers. Note that, even though we
evolved our models on the base of sensitivity and specificity,
Table II presents only accuracy figures as this is the measure
used by almost all the referenced works. From these results
we can observe that in the case of the leukemia data, Fuzzy
CoCo presents the best possible accuracy (i.e., 100% on the
validation set) and the second lowest reported number of rules
and variables per rule. The second and third best accuracies
are presented by Viterbo and Huerta, but they also present the
highest number of rules and variables per rule. On the other
hand, works reporting compact fuzzy models–i.e., with few
rules and few variables per rule–also exhibit lower accuracy.
Thus, for this data set, as Fuzzy CoCo presents the best
accuracy and the second most compact models, it exhibits
the best trade-off between these two goals. Regarding the
performance of Fuzzy CoCo on the colon cancer data as
compared with the model reported by Huerta, one can observe
higher accuracy using a considerably-lower number of genes.
For prostate and lung cancer datasets, Ho and Wang report
fuzzy models of similar size in terms of number of rules
and variables per rule than those obtained by Fuzzy CoCo.
However, our models exhibit a (much) better accuracy.
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Fig. 4. Accuracy in validation for each of the four data set analyzed.
The accuracy is used as measure of performance in the papers cited in this
work. Nevertheless, we consider that sensitivity and specificity must be also
presented, since accuracy in some cases can hide interesting patterns than can
be highlighted when observing the sensitivity and specificity.

V. CONCLUSION

Designing interpretable systems is a prime goal of Fuzzy
Coco approach. It allows to create fuzzy systems providing
high numeric precision, while incurring as little a loss of
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Fig. 6. Sensitivity in validation for each of the four data sets analyzed.

interpretability as possible. Thus, creating very compact fuzzy
systems with a high accuracy. These features make of Fuzzy
CoCo a perfect technique to select relatively small subset of
genes associated to cell functions from thousands of microar-
ray gene expression data. After testing Fuzzy CoCo on a four
benchmark problems, namely: leukemia (Golub et al.), colon
cancer (Alon et al.), lung cancer (Gordon et al.) and prostate
cancer (Singh et al.), we showed that in all cases, Fuzzy
CoCo produces systems both of high performance and high
interpretability, comparable (if not better) than the best models
demonstrated to date. However, although Fuzzy CoCo allow
to find very compact fuzzy models it still the open question
of which of that models are the most biologically correct. In
addition, to find a good fuzzy model is not limited to finding
the most accurate model, but it is also related with which genes
are involved in such models, looking for relevant indications
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TABLE II
COMPARISON OF THE RESULTS OBTAINED MODELING WITH FUZZY COCO WITH THOSE REPORTED BY THE REFERENCED PAPERS. THE MODELS ARE

ANALYSED IN TERMS OF ACCURACY AND COMPACTNESS (MEASURED BY NUMER OF RULES AND NUMBER OF VARIABLES PER RULE). TO FACILITATE

THE COMPARISON, WE MENTION EXPLICITELY WHETHER THE RESULTS CORRESPOND TO A SINGLE SYSTEM (BEST) OR TO THE AVERAGE OVER A LARGE

NUMBER OF MODELS (MEAN).

Data set information
Name Number of Cases Number Paper Number Variables Accuracy AUC

genes used used of classes of rules (Genes) used

Acute myeloid and lymphoblastic 5327 72 2 Ohno-Machado 2 (best) 2 (best) 0.79 (best)
leukemia (Golub et al.) et al. [11]

5327 72 2 Vinterbo et al. [19] 35 (mean) 21.8 (mean) * 0.95 (mean)
5327 72 2 Ho et al. [5] 3.5 (mean) 4.1 (mean) 0.94 (mean)
1360 62 2 Huerta et al. [6] * 30 (best) 1 (best)
5327 72 2 Barreto-Sanz et al. 2.3 (mean) 1.8 (mean) 1 (mean) 1 (mean)

Colon data set (Alon et al.) 2000 62 2 Huerta et al. [6] * 17 (best) 0.90 (best)
2000 62 2 Barreto-Sanz et al. 2.6(mean) 2.41 (mean) 0.99 (mean)

Prostate tumor (Singh et al.) 10509 102 2 Ho et al. [5] 2.4 (mean) 4.1 (mean) 0.91 (mean)
10509 102 2 Barreto-Sanz et al. 2.3 (mean) 2.1 (mean) 0.93 (mean)

Lung cancer (Gordon et al.) 12533 181 2 Wang et al. [22] 3 (best) 2 (best) 0.91 (best)
12533 181 2 Barreto-Sanz et al. 2.1 (mean) 2.08 (mean) 0.97 (mean)

“*” The results are not listed in the original papers

about the relationships between them. For instance to finding
groups of models and genes with the highest repeatability. This
analysis makes part of our future work.
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