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Abstract—Leukemia is a very heterogeneous cancer of the
hematopoietic system. Since its main cause consists of genomic
defects in the hematopoietic stem or progenitor cells and given
the high complexity of the hematopoietic system, it may seem an
important task to investigate the transcriptomic similarities and
differences between leukemia subtypes and hematopoietic cells
(stem cells, progenitors and differentiated cells).

In this paper, we integrate the largest publicly available gene
expression datasets of leukemia and normal hematopoiesis with
the aim of uncovering the main gene modules involved in normal
hematopoiesis as well as in the various leukemia subtypes.

Using a joint consensus clustering algorithm, we have been able
to relate the major leukemia types to their putative cells of origin
in an unsupervised manner. While the normal hematopoietic cell
modules are also active in leukemias of the corresponding cell
type, our approach has determined leukemia-specific modules
comprising genes with a known involvement in leukemogenesis.

The expression modules uncovered implicate an unusually
large number of transcription factors. This speaks against very
simple models of normal hematopoiesis and leukemogenesis that
involve just a handful of critical TFs, arguing for the interplay of
complex transcription factor networks, in line with the findings
of the FANTOM consortium for leukemia and Novershtern et al.
for normal hematopoiesis.

Index Terms—joint clustering, leukemia, hematopoiesis.

I. INTRODUCTION

Leukemia is a very heterogeneous cancer of the hematopoi-
etic system, which involves complex genomic changes in
hematopoietic stem cells, leading to abnormalities in various
hematopoietic cell populations. Its current classification in-
cludes acute lymphoblastic leukemia (ALL), chronic lympho-
cytic leukemia (CLL), acute myelogeneous leukemia (AML)
and chronic myelogeneous leukemia (CML), with a myriad of
subtypes and other rarer types. Since its main cause consists of
genomic defects in the hematopoietic stem or progenitor cells
and given the high complexity of the hematopoietic system, it
may seem an important task to investigate the transcriptomic
similarities and differences between leukemia subtypes and
hematopoietic cells (stem cells, progenitors and differentiated
cells).

Given the unique experimental accessibility of the various
cell compartments, including the stem cells, leukemias are
probably one of the best suited cancers for a genomic experi-
mental investigation of the cancer stem cell hypothesis. A re-
lated hypothesis suggesting that cancer involves developmental
programs gone awry can also be tested, as long as detailed

transcriptomic data about normal hematopoietic differentiation
is available.

In this paper, we integrate the largest publicly available gene
expression datasets of leukemia and normal hematopoiesis
with the aim of uncovering the main gene modules involved
in normal hematopoiesis as well as in the various leukemia
subtypes. The main assumption is that leukemia reuses “nor-
mal” gene modules in inappropriate ways – finding these
modules and associating them to leukemia subtypes is of
great importance for developing a more detailed genomic
subclassification of leukemia. This is needed because the
heterogeneity of most subtypes is not entirely accounted for
by the current classification, which is based mainly on the cell
types and the more frequent genomic changes. For example, in
the case of AML, the majority of cases are classified as ‘AML
with normal karyotype and other abnormalities’, while the
cases with more frequent well defined translocations represent
just a minority. Thus, although the current classification can be
accurately predicted from genomic data based on supervised
machine learning methods [9], it seems of importance to be
able to characterize the main disease subtypes as well as
the associated gene modules in an unsupervised, or semi-
supervised manner.

One of the simplest and most effective clustering methods
for microarray data is based on Nonnegative Matrix Factor-
ization (NMF) [14], [5], [11], which tends to produce sparse
and domain-interpretable decompositions using a very simple
computational framework. The nonnegativity constraints im-
posed by NMF distinguish it from other dimensional reduction
methods such as Principal Component Analysis, which tend to
produce more “holistic” decompositions that are much harder
to relate to real biological sub-processes.

While a large number of gene expression studies employing
matrix factorization in general and NMF in particular have
been put forward (with [5], [11] among the first), only a much
smaller number of studies were able to deal with simultaneous
factorizations of several relations (or matrices):

• Alter et al. [1] have employed the generalized SVD
(GSVD) algorithm for comparing two cell cycle datasets
(sharing the sample timepoints),

• Lee et al. [13] also used GSVD, but this time for
comparing array CGH copy number profiles from patient-
matched normal and tumor samples,

• Ponnapalli et al. [20] generalized GSVD to a Higher-
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Order GSVD (which allows an arbitrary number of
matrices sharing a given dimension) and applied it again
to cell cycle data,

• Badea [3] introduced the siNMF algorithm which simul-
taneously factorizes a pair of gene expression matrices
with matching genes. [2] further generalizes siNMF to
an arbitrary multirelational setting involving an arbitrary
number of entities linked by binary relations.

Unfortunately, none of these approaches is without prob-
lems. Like their original SVD counterpart, GSVD-based ap-
proaches tend to produce holistic decompositions which are
hard to interpret or to relate to precise biological networks. On
the other hand, NMF-based approaches are prone to instability,
especially in multi-relational domains, where different runs of
the algorithm (with different initializations) tend to produce
distinct results (clusters).

We have developed a multirelational consensus clustering
method [submitted] that is able to deal with the inherent
instability of multirelational clustering. In this paper, we apply
it to the unsupervised joint subclassification of leukemias
and normal hematopoiesis. For this, we have combined the
largest publicly available transcriptomic dataset for leukemia,
the MILE study [9] with the largest gene expression study of
normal hematopoiesis [18]. For a relatively small number of
target clusters (namely 15), the algorithm was able to recover
in an unsupervised manner the main types of leukemia and
normal hematopoietic cells, as well as to link major leukemia
types to their putative cells of origin.

II. METHODS

A. The datasets

We have combined the gene expression data of the MILE
leukemia study [9] with the transcriptomic data for normal
hematopoiesis of [18].

The MILE study has measured gene expression profiles from
the bone marrow (1556 samples) and peripheral blood (540
samples) of 2096 patients: 750 ALL cases, 542 AML, 448
CLL, 76 CML, 206 MDS (myelodysplastic syndrome), 74
healthy persons. Each sample was assigned to one of 17 more
detailed leukemia subtyes or to ‘normal’. Unfortunately, no
follow-up information was available for this very large cohort
of patients (T. Haferlach, personal communication). The raw
Affymetrix U133 Plus 2.0 CEL files were downloaded from
GEO (datset GSE13159) and reprocessed using the RMA
algorithm implemented in Affymetrix Power Tools (APT).

The study of Novershtern et al. [18] has profiled the
transcriptomes of 38 distinct types of purified hematopoietic
cells (211 replicates in total) on a slightly different microar-
ray platform (Affymetrix U133A). We have downloaded the
raw CEL files from GEO (dataset GSE24759) and RMA-
normalized them also using APT.

Since virtually all U133A probesets are also present on the
U133 Plus 2.0 chip, we have retained only the common probe-
sets on the two platforms (22268 probesets). We then filtered
the probesets retaining only those with a significant expression
(mean of the log2-values > log2(100) and standard deviation
of log2 values > 0.8). This resulted in 7417 probesets.

Besides the gene expression matrices of the leukemia (XL)
and respectively hematopoiesis dataset (XH ), we employed

Fig. 1. The joint analysis of leukemia (L) and hematopoiesis (H). g : genes,
sL, sH : samples, tL, tH : subtypes, XL, XH : gene expression matrices,
YL, YH : subtype matrices

the given subtype information, YL for leukemia and YH for
hematopoiesis. YL(sL, tL) is 1 if leukemia sample sL is of
subtype tL and 0 otherwise. (Similarly for YH .) There are 18
leukemia subtypes and 38 subtypes of normal hematopoietic
cells.

B. Multirelational clustering with Nonnegative Matrix Factor-
ization

We briefly review the framework fo multirelational learning
using nonnegative decompositions [2].

A multirelational domain involves a set of entity types
{E(n)}n as well as a set of numerical relations {R(mn)}mn

between these entity types. An entity type E(n) is a set of Nn

related entities (such as genes, samples or disease subtypes).
In our setting, the nonnegative real-valued relation matrices
R

(mn)
ij are weighted by means of weight matrices W

(mn)
ij ,

which allow us to represent unknown relation entries (i, j)
(by setting W

(mn)
ij = 0), as well as to balance relations with

widely disparate value ranges.
Figure 1 presents the multirelational domain of interest in

this paper. The gene expression matrices for leukemia (XL)
and hematopoiesis (XH ) are viewed as numerical relations
between genes (g) and samples (sL, sH ). Note that since genes
represent a shared entity type, the corresponding gene clusters
will be common to the factorizations of XL and XH .

More precisely, a rank-Nc multirelational nonnegative
decomposition (MNMF) of a multi-relational structure
〈{E(n)}n, {R(mn)}mn,W (mn)}mn}〉 is an assignment of a
nonnegative factor matrix E(n) of size Nn×Nc to each entity
type E(n), such that all relations R(mn) are approximated by
the product of the corresponding entity type matrices

R(mn) ≈ E(m) · E(n)T . (1)

Formally, we minimize the following weighted squared error
function

f =
1
2

∑
s,d

∑
i,j

W
(sd)
ij

(
R

(sd)
ij −

Nc∑
c=1

E
(s)
ic · E(d)

jc

)2

(2)

subject to nonnegativity constraints for the entity matrices
E(n) ≥ 0.

A simple algorithm solving the optimization problem (2)
was developed by generalizing the method employed by Lee
and Seung for standard NMF [14]. The algorithm randomly
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initializes the entity matrices E(n) and then iteratively applies
the following multiplicative update rules until convergence:

E(n) ← E(n) ◦ N (n)

P (n)
, with (3)

P (n) =
∑

(s,n)∈R

[
W (sn) ◦

(
E(s) · E(n)T

)]T
· E(s) (4)

+
∑

(n,d)∈R

[
W (nd) ◦

(
E(n) · E(d)T

)]
· E(d)

N (n) =
∑

(s,n)∈R

[
W (sn) ◦R(sn)

]T
· E(s) (5)

+
∑

(n,d)∈R

[
W (nd) ◦R(nd)

]
· E(d)

where ‘◦’ and ‘−’ represent elementwise (Hadamard) multipli-
cation and respectively division of matrices, while (m,n) ∈ R
denotes the existence of a relation between entity types E(m)

and E(n).
Elsewhere [submitted] we prove that the error function (2)

is nonincreasing under the multiplicative update rules (3).

C. Multirelational consensus clustering

Clustering gene expression data is affected by the small
sample sizes compared to the numbers of variables, which
leads to clustering instability. Consensus clustering aims
at obtaining clusters that are more stable across different
clustering runs. However, developing a consensus clustering
algorithm for multi-relational decompositions is non-trivial.
Existing consensus clustering approaches [16] construct a
consensus matrix of items, which records for each item pair
the frequency of their co-occurrence in the same cluster during
a number of different clustering runs. Unfortunately, this
simple idea only works for one-way clustering and not for the
biclusters (two-way clusters) produced by (multi-relational)
matrix factorizations. To deal with this problem, in [4] we
have used a Positive Tensor Factorization [25] for clustering
the biclusters obtained in a number of different factorization
runs. Furthermore, we generalized this approach to the multi-
relational setting [submitted].

Briefly, we start with a number Nr of different runs of the
multirelational MNMF algorithm, which is assumed to have
produced Nr individual factorizations {E(n)

r }n=1,...,Ne
r=1,...,Nr

(index

n refers to the entity type, while r refers to the run). E
(n)
r are

entity matrices whose entries E
(n)
icr denote the membership of

entity i (having entity type n) to cluster c of run r.
A consensus clustering corresponds to

• a set of consensus entity matrices e
(n)
ik (with i an entity

and k ∈ {1, . . . , Nc} an index referring to a specific
consensus cluster), together with

• a cluster correspondence array αcrk (which shows how
the individual clusters c from run r are recomposed from
consensus clusters k)

such that the biclusters obtained in the different runs can be
recovered from the following Positive Tensor Factorization:

E
(s)
icr · E(d)

jcr ≈
Nc∑
k=1

αcrke
(s)
ik e

(d)
jk . (6)

More formally, (6) is rewritten as a minimization problem
for the following error function:

F
(
α, {e(n)}n

)
=

1

2

∑
(s,d)∈R
c,r,i,j

(
E

(s)

i(cr)E
(d)

j(cr) −
Nc∑
k=1

α(cr)ke
(s)
ik e

(d)
jk

)2

.

(7)

Note that in (7) we have grouped the (cr) indices in α and
E in order to deal with matrices rather than 3-dimensional
arrays.

The objective function (7) above aims at minimizing the
Euclidean distance between the bicluster c from run r (given
by
(
E

(s)
i(cr)E

(d)
j(cr)

)
ij

) and the cluster reconstructed from the

consensus biclusters
(
e
(s)
ik e

(d)
jk

)
ij

by means of the cluster

correspondence matrix α(cr)k.
The consensus clustering algorithm runs MNMF Nr times,

randomly initializes {e(n)}n and α, then iteratively applies the
following update rules

e(n) ← e(n) ◦
E(n) ·

(
α ◦ ∑

(d,n)or(n,d)∈R
E(d)T · e(d)

)

e(n) ·
(

(αT · α) ◦ ∑
(d,n)or(n,d)∈R

e(d)T · e(d)

)

α ← α ◦

∑
(s,d)∈R

(
E(s)T · e(s)

) (
E(d)T · e(d)

)
α · ∑

(s,d)∈R

(
e(s)T · e(s)

) (
e(d)T · e(d)

)
until convergence. Subsequently, α is normalized such that∑

c,r α(cr)k = Nr. Finally, the consensus clusters {e(n)}n are
used as initialization for a final MNMF run.

Note that the consensus clusters need not necessarily be
highly recurring clusters across the different runs. They could
form a “base” set of clusters out of which all the clusters
could be reconstructed by means of linear combinations. This
allows learning of frequently occurring subclusters, thereby
alleviating the need for very large numbers of runs.

We applied our consensus clustering algorithm to the re-
lational structure from Figure 1. We used relation weights
to equalize the Euclidean norms of the relations and then
reduced the weights of the subtype relations by 1/100 to avoid
any significant bias of the known subtype information on the
inferred clusters.

Next, we determined the number of clusters Nc based on
a series of MNMF runs with progressively larger Nc, ranging
from 2 to 50 (see Figure 2). To avoid overfitting, we performed
a similar set of runs on the randomized entity matrices and
compared the decrease of the error with Nc in the two cases.
An Nc was chosen such that the error decrease on the real
data was significantly larger than that on the randomized data
[11]. In the following, we have chosen Nc = 15 clusters.
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Fig. 2. The decomposition error as a function of the number of clusters for
real and randomized data

D. Cluster annotation

Clusters obtained with our consensus clustering algorithm
were analysed in detail using several annotation tools. We used
the DAVID functional annotation tool (v6.7 online at david.
abcc.ncifcrf.gov) to obtain the most significant annotations for
the top 100 genes of each cluster. We also used the FANTOM4
EdgeExpressDB database for gene regulation in acute myeloid
leukemia (online at fantom.gsc.riken.jp/4/edgeexpress) to con-
struct putative gene regulation networks corresponding to the
top 50 and respectively 100 genes of each cluster. EdgeEx-
pressDB networks for all gene modules can be consulted as
supplementary information online at ai.ici.ro/bibe2012. For
the normalized gene cluster matrix E(1), a relatively strict
significance threshold was employed: 2√

N1
.

III. RESULTS

As intended, the multirelational consensus clustering algo-
rithm tends to infer sample-specific gene modules (biclusters)
rather than obtain a simple unidimensional clustering of the
samples. These modules may be involved both in disease
and in normal cells, although some modules are specific to
leukemia and others to normal hematopoietic cells.

Figures 3 and 4 show the sample clusters for leukemia
and respectively normal hematopoiesis. (Rows correspond to
samples, while columns represent clusters.) Note that certain
clusters overlap, indicating the activation of several gene
modules in the corresponding samples. At the 15 cluster-
level of granularity, the clustering easily recognizes the main
leukemia classes: T-ALL, B precursor ALL, CLL, AML, while
CML and especially MDS and normals are clustered closer
together. Other gene modules/clusters are more specific to
normal hematopoiesis, with major distinctions between mature
B cells, T cells and cells of the myeloid lineage respectively.

In the following, we present a more detailed analysis of the
clusters obtained.

Cluster 1 represents a gene module activated mainly
in B precursor ALL (c-ALL/pre-B-ALL, pro-B-ALL with
t(11q23)/MLL, ALL with t(12;21), ALL with hyperdiploid
karyotype and ALL with t(1;19)), which involves less dif-
ferentiated B cells. Although significantly active mainly in
leukemia, this gene module is also weakly active in the
corresponding normal hematopoietic cells, namely early B

Fig. 3. The leukemia sample clusters

cells, pro B cells or even hematopoietic stem cells (both
CD133+CD34dim and CD38-CD34+). The functional anno-
tation of the module with DAVID revealed genes involved in
the immune response (p-value 7.5·10−9): HLA-DQB1, CIITA,
POU2AF1, HLA-DRB1, RAG1, PAX5, IGHM, HLA-DMA,
CD74, LAT2, LILRA2, CD79B, DEFA1, HLA-DPA1, HLA-
DPB1, CD24, BLNK, HLA-DRA, as well as in lymphocyte
activation (p = 3.3 · 10−5): LAT2, RAG1, SOX4, BANK1,
CD24, HLA-DMA, CD74, BLNK.

Comparing cluster 1 with gene module 4 (specific, as we
shall see below to normal mature B cells) revealed a significant
overexpression of SOCS2 and of the transcription factors
SOX4 and PAX5. Note that SOX4 was recently shown to cause
acute leukemia if overexpressed in mouse hematopoietic stem
cells [23]. PAX5 encodes the B-cell lineage specific activator
that is expressed at early stages of B-cell differentiation. PAX5
is a critical factor in B-ALL development and aberrant PAX5
expression especially at early stages may lead to leukemic
transformation [8]. The EdgeExpressDB network associated
to the top 50 genes of cluster 1 is depicted in Figure 5.

Gene modules 10 and 11 are mainly active in chronic lym-
phocytic leukemia (CLL). However, while module 10 seems to
be driven mainly by TCF4, module 11 is probably controlled
by a more complex network including several transcription
factors, such as ID3, PAX5, KLF4, KLF6, KLF9, LEF1, JUN,
etc. (see the corresponding EdgeExpressDB networks from the
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Fig. 4. The hematopoiesis sample clusters

supplementary information online). PAX5 has been previously
observed to be expressed in all B-CLL and pre-B ALL [17],
precisely confirming our findings (see the involvement of
PAX5 in the B precursor ALL module 1, as well as its central
role in the EdgeExpressDB networks for clusters 1 and 11).
Although primarily active in CLL, these two gene modules (10
and 11) are also weakly active in mature B-cells, as expected.

As opposed to the gene modules discussed above, module
4 is primarily activated in normal mature B-cells, but is also
weakly involved in CLL, as expected. According to EdgeEx-
pressDB, it is mainly driven by IRF8, MEF2C and TCF4 (also
see supplementary information online). Significant annotations
for this cluster included lymphocyte activation (p = 7.5·10−9):
EGR1, PTPRC, BCL11A, MS4A1, SMAD3, BANK1, CD24,
TPD52, HLA-DMA, CD74, BLNK, and immune response
(p = 2.3 · 10−19).

Gene module 6 is dominant mainly in AML cases,
but is also weakly active in hematopoietic stem cells
(HSC CD133+CD34dim and CD38-CD34+), megakary-
ocyte/erythroid progeniors (MEP) and common myeloid pro-
genitors (CMP). Its closest normal counterpart is gene mod-
ule 13, which is primarily expressed in HSC, MEP, CMP,
as well as in the least differentiated erythroid progenitors
(CD34+CD71+GlyA- and CD34-CD71+GlyA-), with weaker
activation in the more differentiated progenitors. Apparently,
gene module 13 encodes a stem cell/progenitor-specific ex-
pression program (L2L annotations: hsc hsc and progeni-

Fig. 5. EdgeExpressDB network for cluster 1 (B precursor ALL)

tors adult, p = 7.7 · 10−9) involving PBX1, MYB, GATA2,
ETS2, TAL1, etc.

Compared to module 13, module 6 overexpresses key tran-
scription factors like SOX4, HOXA10, CITED2, JUN, FOS,
etc. Although the normal function of SOX4 in hematopoietic
stem cells (HSCs) is not known, its overexpression in mouse
HSCs has been shown to cause myeloid leukemia [23]. It
is also known that deregulation of HOXA10 initiates AML
[21], as HOXA10 is a critical regulator of HSCs and ery-
throid/megakaryocyte development [15]. CITED2 is an essen-
tial regulator of adult HSCs [12]. It has also been previously
demonstrated that JUN shows an elevated expression in AML
[22], as does FOS [24].

The most significant cluster 6 gene (with the largest co-
efficient) is FLT3, a receptor tyrosine kinase that regulates
hematopoiesis. Mutations that result in the constitutive activa-
tion of this receptor result in acute myeloid leukemia and acute
lymphoblastic leukemia. Even in the absence of mutations,
overexpression of FLT3 has been shown to associate with a
poor prognosis for overall survival [10].

Significant annotations for module 6 included bone marrow
stem progenitor (p = 5 · 10−11): CEBPA, HIST2H2AA3,
GNA15, LMO2, LGALS1, ANXA1, SPINK2, RPL36,
IGF2BP2, TAGLN2, FAM46A, AZU1, HHEX, FOS, TARP,
HIST2H2BE, HOXA10, CAT, PRKACB, RPL10A, CFD,
SRGN, ATP8B4, and bone marrow acute myelogenous
leukemia (p = 5.1 · 10−9).

In contrast, cluster 13 showed, as expected, a significant
annotation for normal bone marrow (p = 5.9 · 10−6).

It is remarkable that the highest level stem cell in the
hematopoietic lineage (CD133+CD34dim) is primarily in-
volved in acute leukemias (B precursor ALL in module 1 and
respectively AML in module 6).

Gene module 2 covers the T-ALL cases, while its “normal”
counterpart, module 8 is mainly active in normal T-cells and
certain NK cells, with weaker activation in T-ALL. Comparing
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the T-ALL expression program (module 2) with the normal
T-cell expression module 8, we noticed increased expression
of SOX4, MYB, JUN and TOP2A in T-ALL. Interestingly,
the MYB trascription factor oncogene is tandemly duplicated
in T-ALL [19] and may represent a novel therapeutic target
[6]. Note the prominent role of MYB in B-recursor ALL
(module 1), T-ALL (module 2) and AML (module 6) (cf.
EdgeExpressDB networks in the supplementary information).

Gene module 14 covers normal differentiated erythroid
cells (annotation erythrocyte differentiation p = 10−6) and
is only weakly active in MDS cases. Among the specific
genes for this module are transcription factors like KLF1 (a
known hematopoietic TF of adult erythroid genes), NFE2, as
well as hemoglobin genes (HBA1, HBG1, HBB, etc.) and
glycophorins (GYPA, GYPB – major sialoglycoproteins of the
human erythrocyte membrane), etc.

Finally, gene module 3 contains many genes involved
in cell division (p = 3.3 · 10−8), e.g. CCNB1, CDK1,
KIF11, MAD2L1, CETN3, PAFAH1B1, NDC80, ANAPC10,
SMC1A, RACGAP1, SMC2, SMC4, and is active in most
leukemia samples.

IV. DISCUSSION

We have developed a method for inferring the main gene
modules involved in leukemia and normal hematopoiesis.
While the normal hematopoietic cell modules are also active
in leukemias of the corresponding cell type, our approach
has determined leukemia-specific modules involving genes
with a known involvement in leukemogenesis, such as FLT3,
HOXA10, SOX4, PAX5, MYB, etc. It is noteworthy that the
algorithm has been able to relate the major leukemia types to
their putative cells of origin in an unsupervised manner.

A careful analysis of the clusters obtained as well as a
brief inspection of Figure 2 shows that a clustering with
Nc = 15 clusters only reveals the main gross gene×sample
modules in the data. Such a coarse decomposition was crucial
for validating our approach1, but may need to be refined for
obtaining finer-grained gene modules and disease subtypes.
However, the validation of such finer grained decompositions
would involve extensive experimental efforts and is therefore
beyond the scope of this paper.

The expression modules uncovered involve an unusually
large number of transcription factors. More precisely, using
a relatively strict significance threshold for the normalized
gene cluster matrix2, we obtained 273 transcription factors
significantly involved in the Nc = 15 clusters, a much larger
number than normally expected. This speaks against very
simple models of normal hematopoiesis and leukemogenesis
that involve just a handful of critical TFs, arguing for the
interplay of complex transcription factor networks, in line with
the findings of the FANTOM consortium for leukemia [7] and
[18] for normal hematopoiesis.

Finally, we believe that the generality of our multi-relational
clustering algorithm will find numerous applications in the
analysis of various high throughput data, given the urgent

1as the clusters obtained were coarse enough to enable a direct comparison
with the known leukemia types

2We have normalized the columns of the gene cluster matrix to unit
Euclidean norm.

need to incorporate in a mathematically coherent way as much
relational information about the problem as possible. After all,
biological function is to a large extent relational.
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