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Abstract

Since alternans phenomena in the cardiac repolariza-

tion have been shown to be related to arrhythmogenesis,

a number of sophisticated methods have been proposed

to detect and estimate microvolt T-Wave Alternans (TWA).

However, their robustness with respect to the inclusion

and tuning of the processing stages has not always been

analyzed and quantified in detail. We propose a proce-

dure based on bootstrap techniques to study the effect of

some relevant preprocessing stages in a TWA estimation

system. A controled data base was obtained by adding

noise and TWA to control ECG signals. Several experi-

ments were performed, each one to evaluate the influence

of one characteristic of a processing stage in the whole

TWA estimation system. For the analysis, different statis-

tics (median, confidence interval width, and power) were

obtained for the TWA amplitude estimation errors. It can

be concluded that interactions among different preprocess-

ing subsystems are complex, not always completely char-

acterized, and small variations can affect significantly to

the overall performance of the detection system.

1. Introduction

T-wave Alternans (TWA) can be defined as a beat-to-

beat consistent fluctuation in the cardiac repolarization

morphology. This phenomena can be observed in the

Electrocardiogram (ECG) under adequate conditions, and

TWA have been shown to be related to cardiac instability

and increased arrhythmogenicity. Clinical studies suggest

that there is a patent relationship between large amplitude

microscopic (microvolt level) TWA and the risk of sudden

cardiac arrest [1], therefore, TWA represents an important

marker of cardiac electrical instability and have potential

for arrhythmic risk stratification [2].

Though a number of methods have been proposed to

detect and estimate the TWA, there is no definite method

available to date, mostly due to the difficulties in the defi-

Figure 1. Processing stages diagram for TWA estimation.

nition of a gold standard for the comparison and validation

of the proposed algorithms [3].

The aim of this work is to analyze in detail the effect of

some relevant signal processing stages in a TWA estima-

tion system. For this purpose, a simple, yet operative, sta-

tistical test for system comparison is proposed, which uses

the nonparametric bootstrap resampling for building confi-

dence intervals. A general processing system for obtaining

time-domain waveform-based decision statistics is used as

demonstration of the capabilities of the method (see Fig 1).

The paper is structured as follows. In the next section,

the processing blocks of the TWA estimation scheme are

described, with emphasis in the preprocessing stages and

in the nonparametric paired bootstrap test. Next, the semi-

synthetic data base used for the experimental work is in-

troduced. Results and benchmarks on the waveform-based

TWA detection system are presented, and conclusions are

briefly scrutinized.

2. Methods

The TWA estimation system considered in this paper is

a waveform-based scheme, which consists of the following

stages (Fig 1).

Preprocessing. The first stage consist of two prepro-

cessing blocks: (1) a BaseLine Cancellation (BLC) block,

to remove baseline fluctuations from the ECG by using a

smoothing filter together with spline interpolation; and (2)

a zero-phase distortion Low Pass Filter (LPF) block, to re-
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move the high frequency noise. The convenience of in-

cluding these blocks, as well as their parameters tuning,

are studied in this work.

R-wave Detection. In this stage, a Band Pass Filter

(BPF) [7.5-17.5] Hz is applied to remove those compo-

nents not corresponding to the QRS complexes. Then, an

adaptive threshold is used to isolate the QRS complexes,

and the maximum of each QRS complex is selected as the

R-wave.

T-wave Segmentation. This stage segments each T-wave

by taking the signal segment between the R-wave and the

70% of the precedent cycle length. Then, each segment is

resampled to a rate given by the ratio between the number

of samples of the current segment and those of previous

RR interval. The resampled T-wave is limited to the first

100 samples.

T-wave Alternan Estimation. The first block of this sub-

system generates T wave templates separately for even and

odd beats. The following block estimates the amplitude of

the TWA as the maximum difference (absolute value) be-

tween the odd and the even templates.

In order to study the effect of each subsystem in Fig 1,

we designed an evaluation procedure based on nonpara-

metric bootstrap techniques [4], which are next summa-

rized.

Model Comparison with Paired Bootstrap. Each exper-

iment, which is a system robustness analysis, is here de-

signed as the comparison between two data models, named

Model A and Model B. Label Model represents a whole set

of blocks used for the TWA estimation, together with the

free parameters setting in all of them. A controlled ap-

proach consists on choosing both models being equal, ex-

cept for a single feature that is the one to be benchmarked

(such as including vs excluding a subsystem, or using two

different values for a free parameter). To decide whether

the difference between Model A and Model B is statistically

relevant, we establish a decision statistic and a hypothesis

test.

A suitable statistical hypothesis test is to contrast the

null hypothesis (H0) that Model A and Model B have the

same unexplained variance against the alternative hypothe-

sis (H1) that both models have different unexplained vari-

ance. Let XMA and XMB denote the statistics obtained

from the residuals using Models A and B, respectively, and

define ∆X as:

∆X = XMB − XMA (1)

Then, the hypothesis test can be stated as:

{

H0 : ∆X = 0

H1 : ∆X 6= 0
(2)

In order to approximate the probability density func-

tion of XMA, XMB , and subsequently of ∆X , we used

a paired bootstrap resampling method with B random re-

samplings. The paired bootstrap considers exactly the

same resampling sets, X∗

MA
(b) and X∗

MB
(b), for comput-

ing ∆X∗(b), for b = 1, ..., B (B = 500 for the experi-

ments in this work). An estimation of the confidence inter-

val for ∆X can be easily obtained from bootstrap resam-

ples ∆X∗(b). We state that H0 is fulfilled if the confidence

interval contains the zero point, otherwise H1 is accepted

and we can state that the differences between both mod-

els are statistically relevant in terms of that statistic. Note

that using the same resampling for estimating XMA, XMB

from the residuals of both models, we are controlling the

resampling variability of the ∆X estimate, and the vari-

ance of the estimator will be due only to the differences

between both models. This approach is called a paired

bootstrap test. A detailed discussion on bootstrap resam-

pling for statistical hypothesis test can be found in [4].

In this work we compared two models in each experi-

ment, differing just in one design block/parameter of the

preprocessing stage. A set of 50 semi-synthetic signals

were obtained (see Sec.3) for each experiment, and for

each signal, the TWA amplitude was estimated.

The decision statistics chosen for the bootstrap hypoth-

esis test comprise the Median (Med), a central tendency

parameter, the 95% Interval Confidence Width (ICW ), a

dispersion tendency parameter, and the Power (P ), which

comprises both dispersion and central tendency effects.

3. Dataset

Three minutes records were generated by adding noise

and TWA to a set of five control ECG signals from the

MIT-BIH Arrhythmia Database (fs = 360Hz) [5], us-

ing the first lead of the records. The criteria to take the

control ECG signals were described in [6]. Physiolog-

ical noise records from the MIT-BIH Noise Stress Test

Database (fs = 360Hz) [5] were used to obtain nonsta-

tionary ECG signals. Three possible noise sources were

considered, namely, muscular activity artifact, electrode

motion artifact, and baseline wandering, which are pre-

dominant in ‘ma’, ‘em’ and ‘bw’ records, respectively. To

create every semi-synthetic signal, a three minutes seg-

ment of the noise records was added to the control ECG

signal. The noise segment was extracted from a random

position in the whole noise record. Experiments were con-

ducted for the control ECGs with no added extra noise

and for different Signal to Noise Ratio (SNR), namely, 25

dB and 15 dB. Finally, TWA episodes were included by

adding an alternan waveform of 35µV amplitude to every

other beat with different patterns: pattern1, with no TWA;

pattern2, pattern3, and pattern4, with alternans in the 10%,

50%, and 100% of the signal, respectively. The inclusion

pattern was randomly selected for each signal.
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Table 1. Experiment 1. ∆X of the decision statistics (mean, [95% IC]) for TWA amplitude estimation errors.
Noise SNR Med ICW P

No -0.89,[-1.16,-0.75] -0.78,[-0.81,-0.28] -22.89,[-30.43,-15.50]

bw 25 dB -0.96,[-1.36,-0.44] 0.15, [-1.60,1.76] -13.56,[-34.59,9.93]

15 dB -0.68,[-1.35,0.84] 5.81,[0.12,14.94] 28.25,[-26.69,94.25]

ma 25 dB -0.68,[-1.28,-0.04] -0.19,[-1.75, 0.67] -30.48,[-49.19-13.09]

15 dB -0.08[-1.51,1.85] 11.29, [3.04,25.15] 129.75,[-18.63,295.55]

em 25 dB -0.81,[-1.50,-0.03] 0.16,[-1.70,2.94] -35.62, [-65.54,-9.90]

15 dB 0.28,[-1.58,3.29] 2.17,[-6.25,14.18] 277.74,[79.00,510.43]

4. Results

The experiments in this work were focused in the pre-

procesing blocks (Fig. 1). Tables show the mean and 95%

IC of the difference ∆X between the statistics XMB and

XMA for TWA amplitude estimation errors. Results are

highlighted when the 95% IC of ∆X does not overlap

zero. In this case, a negative value in certain statistic means

that Model B outperforms Model A for that statistic, since

its residuals for Model B are significantly lower than those

for Model A, while a positive value means that Model A

outperforms Model B.

Experiment 1. The convenience of using the BLC block

was studied, both for no extra noise and for three additive

noise sources (‘bw’,‘ma’,‘em’) with SNR = 15 dB and 25

dB. In all cases Model A included the BLC block, while

Model B did not. Tab. 1 shows that, with no extra noise,

and for the three decision statistics, TWA amplitude esti-

mation was significantly better for Model B. This means

that the BLC block can introduce distortion when the in-

put signal is not very noisy. For SNR = 25 dB, some

of the statistics were still significantly better for Model B:

Med for the three kind of noises, and P for ‘ma’ and ‘em’

noises. However, when the noise level was increased to get

SNR = 15 dB, the trend changed and some of the statistics

were significant in favor of Model A: ICW for ‘bw’ and

‘ma’ noises, and P for ‘em’ noise. We suspect that we did

not find considerable differences between the three kind of

noises when studying the BLC block, because noise was

added to real ECGs which may already have baseline wan-

dering.

Experiment 2. All stages in Fig. 1 were used. Model

A included a median filter in the BLC block, while Model

B included a mean filter. Tab. 2 shows the results with

additive ‘bw’ noise and SNR = 25 dB. Note that, in terms

of Med and P statistics, the median filter is preferable in

the BLC block.

Table 2. Experiment2. ∆X of the decision statistics

(mean, [95% IC]) for TWA amplitude estimation errors.
Decision statistic mean, [95%IC]

Med 1.78,[0.93,2.30]

CIW -0.15,[-0.87,0.50]

P 46.82,[21.77,70.95]

Experiment 3. This experiment analyzed the effect of

the window length in the median filter of the BLC block

(TA for Model A and TB for Model B) when all stages in

Fig. 1 were considered. Tab. 3 shows the results with addi-

tive ‘bw’ noise and SNR = 25 dB. The first window length

explored (500 ms) was selected shorter than the majority

of the RR interval lengths in the control ECGs, and it was

progressively increased until we found a length (1000 ms),

from which further increase did not outperform the results.

We did not find many significant differences in this ex-

periment, maybe because the optimum window length is

related to the RR interval length, which changes with the

time evolution and the particular control ECG.

Experiment 4. The effect of including the LPF block

was evaluated. Model A included all blocks in Fig. 1, while

Model B did not include the LPF one. Taking into account

the results from the previous experiments, a median fil-

ter of T = 1000 ms was set in the BLC block. Tab. 4

shows that, without extra noise, statistics were significant

in favor of Model B, which means that the LPF block can

introduce distortion when the signal is not noisy. For SNR

= 25 dB, the test was just significant in favor of Model A

for ICW statistic with ‘ma’ noise. For SNR = 15 dB, no

significant differences were found for ‘bw’ noise (low fre-

quency noise); for ‘ma’ and ‘em’ noises, the test showed a

significantly better performance for Model A in all statis-

tics except for ICW with ‘em’ noise, and this significancy

was stronger for ‘ma’ noise. It seems reasonable that the

LPF affects more to the signals with ‘ma’ noise, since the

power of the ‘em’ noise is concetrated in lower frequencies

than the power of the ‘ma’ noise.

Fig. 2 represents an example of a control ECG with

semi-synthetic TWA episodes: (a) without additive noise;

(b) with additive ‘ma’ noise (SNR = 15 dB). Top panels

show the input signal in Fig 1, medium panels show the

signals after the BLC block, and bottom panels after the

LPF block.

5. Conclusion

Interactions among processing blocks in TWA estima-

tion can be complex and not obvious, and they can affect

significantly the performance. Therefore, further work will

be devoted in this direction.

1037



Table 3. Experiment3. ∆X of the decision statistics (mean, [95% IC]) for TWA amplitude estimation errors.
TA (ms); TB (ms) Med ICW P

500 ; 700 -0.80,[-1.86,0.22] 2.18,[0.87,3.41] -24.01,[-53.49,3.89]

500 ; 1000 -1.53,[-2.78,-0.06] 0.87,[-0.08,1.98] -32.85,[-69.12,1.88]

1000 ; 1500 -0.19,[-0.40,0.09] 0.29,[-0.40,1.07] -6.34,[-15.81,3.05]

1000 ; 2000 0.72,[-1.12,2.30] 4.22,[-1.45,6.90] 24.76,[-24.91,79.41]

1000 ; 4000 1.48,[-0.36,3.17] 5.24,[-0.60,7.90] 50.85,[-5.66,113.90]

1000 ; 8000 1.56,[-0.51,3.25] 5.74,[0.45,8.28] 56.36,[-1.80,117.04]

Table 4. Experiment 4. ∆X of the decision statistics (mean, [95% IC]) for TWA amplitude estimation errors.
Noise SNR Med ICW P

No -2.35,[-4.39,-1.47] -1.09,[-1.71,-0.23] -57.83,[-95.70,-20.37]

bw 25 dB -1.86,[-3.56,0.40] 0.68,[-3.15,3.49] -30.19[-74.39,21.20]

15 dB -2.31,[-4.48,1.45] 8.52,[-2.54,18.93] 26.71,[-43.80,109.68]

ma 25 dB -2.14,[-8.02,3.21] 12.88,[6.79, 15.94] 15.72,[-115.68,154.68]

15 dB 22.89,[15.20,32.60] 55.26,[23.76,73.99] 2012.2,[1287.6,2835.3]

em 25 dB -2.86,[-6.63,3.65] 12.43,[-3.54,19.01] 15.25,[-112.83,141.92]

15 dB 15.95,[9.86,20.21] -5.38,[-38.69,47.92] 1126.2,[56.9,2092.5]
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Figure 2. Example of a control ECG with synthetic TWA episodes. (a) Without additive noise. (b) With ‘ma’ noise (SNR

= 15 dB). Top panels show the input signal in diagram of Fig 1. Medium panels show the signals after the BLC block.

Bottom panels show the signals after the LPF block.
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