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Abstract 
 
Cardiac resynchronization therapy (CRT) has shown 

clinical benefit for patients with heart failure (HF). 

However, up to one third of these patients do not 

respond to CRT. The aim of this study is to determine if 

specific conduction abnormalities are common to 

patients who respond to CRT and if these can be 

identified and quantified on the surface ECG. A signal 

averaging algorithm was developed to enhance the QRS 

features and decrease the noise level. Then, a Meyer 

orthogonal wavelet transformation was applied to the 

ECG to decompose the QRS. 

The receiver operating characteristic curve (ROC) 

showed that a combination of wavelet coefficients with 

clinical factors allowed 80% of sensitivity and specificity 

using the signal from either lead X or Z. Our 

preliminary results indicate that time-scale 

decomposition of the high-resolution QRS signal 

contains information on predicting individuals' response 

to CRT. 

 

1. Introduction 
 

Heart failure affects nearly 4.9 million people in the 

USA and is a major cause of morbidity and mortality for 

all heart diseases. Recently cardiac resynchronization 

therapy, as a relatively new option for therapy of patients 

with heart failure, has shown promising results with 

clinical and functional benefit [1-4]. However, up to 

30% of heart failure patients who are selected according 

to traditional patient selection criteria (QRS > 120 ms, 

left bundle branch block, New York Heart Association 

class III-IV, and left ventricular ejection fraction < 35%) 

do not respond to CRT. Cardiac asynchrony is usually 

associated with the presence of conduction delay. 

Consequently, a prolonged QRS duration (> 120ms) on 

the surface electrocardiogram (ECG) is one of the 

criteria for CRT patient selection. Yet, recent studies 

showed that the degree of left ventricular asynchrony did 

not correlate with the duration of QRS complex and 

revealed poor prediction of CRT success [5-6]. 

Therefore, additional markers are needed to identify the 

patients who benefit the most from CRT. Our objective of 

this study is to apply time-scale decomposition of the  

QRS signal to identify QRS contents common to CRT 

responders based on the Meyer wavelet transformation. 

 

2. Methods 
 

2.1. Study population 
 

This study involved the ECG recordings from patients 

enrolled in the Multicenter Automatic Defibrillator 

Implantation Trial – Cardiac Resynchronization Therapy 

(MADIT-CRT). Fifty-seven patients (mean age = 65 ± 11 

years, 40 males and 17 females) with left bundle branch 

block (LBBB) and mid-narrow QRS duration (130-150 

ms) were used for this study. The patients responding 

positively to CRT were defined based on 

echocardiographic response.  A reduction in left 

ventricular end diastolic volume (LVEDV) superior to 

15% between enrollment and 1-year after CRT was 

considered positive. 
 

2.2. ECG recordings 
 

Standard 12-lead high-resolution Holter ECGs were 

recorded before implantation using Mortara H12+ 

(Milwaukee, WI). The first 10 minutes data were 

recorded while the patients were in supine position. The 

sampling frequency of the signal is 1000 Hz and the 

amplitude resolution is 3.75 たV. 
 

2.3. ECG signal averaging 
 

A signal averaging algorithm was developed to enhance 

the QRS complex features and reduce the noise level. The 

steps implemented in the signal averaging techniques 

were: 
 

1) Baseline wander removal: the baseline wander was 

estimated using linear fitting based on the isoelectric 

points located within the PR intervals. Then the estimated 

baseline was subtracted from the original signal. 

2) Frank leads: three Frank orthogonal leads were 

constructed from the 12-lead applying Dowser transform.  
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3) QRS template: the median beat of 10 correlated 

(correlation coefficient >= 0.97) consecutive sinus beats 

was used as QRS template.  

4) Beat ranking: all the sinus beats were ranked 

according to their noise level that was measured using 

the root mean square (RMS) of the signal inside a 

window located in the PR segments.  

5) Averaging: the beats were orderly entered into the 

averaging process according to their noise ranking. Only 

the QRS signals highly correlated with the template 

(correlation coefficient equal to or higher than 0.97) 

were selected. Averaging was applied until the noise 

level of averaged signal reached 0.5ȝV or no further 

improvement was obtained with additional beats.  

6) The final averaged QRS segment was extracted such 

as an interval of 512 ms beginning 128 ms before QRS 

onset. 
 

2.4. Wavelet transformation 
 

Meyer’s orthogonal wavelet was constructed in the 

frequency domain (detail see [7]). The wavelet transform 

coefficients were computed in the time domain by means 

of inverse Fourier operation (FT-1) in the following 

equation: 
 

 C(a, b) = FT-1{√a) * S(f) * Ȍm(f)} 
 

Where C(a, b) is the wavelet coefficient corresponding 

to scale a and time location b, S(f) is the Fourier 

transform of the signal and Ȍm(f) is the Fourier 

transform of the analyzing wavelet.  
 

 
Figure 1. Example of Meyer orthogonal dyadic 

wavelet decomposition of the 512 ms segment (128 ms 

before QRS onset and 384 ms after). The outlined 

rectangle shows the time and frequency area where 70 

coefficients were used to analyze QRS. The value of 

wavelet coefficients in this figure are in log transformed. 
 

The 512 ms segments were decomposed into 512 

wavelet coefficients by the Meyer’s orthogonal wavelet 

transform. The wavelet decomposition was applied to the 

ECG signal from 128 msec before the QRS onset to 384 

msec after (Figure 1). The range of QRS duration in our 

study population varied between 130 and 150 ms.  Figure 

1 includes the area considered for QRS analysis (70 

coefficients). Only the frequency bands corresponding to 

scale 2 to scale 7 (4-250 Hz) were considered. For easily 

locating each cell in the time-frequency domain, they 

were labeled as cellN_M (where N is the scale number 

and M is the wavelet number for scale N as shown in 

figure 3).  
 

2.5. Statistical analysis 
 

Univariate analysis was applied to assess the normal 

distribution of the 70 cells. Stem plot and Shapiro-Wilk 

normality test were used. A P value < 0.05 was 

considered significant. If the criteria for normality were 

not met, the data was log transformed.  

One-way nonparametric test was performed on each 

coefficient from three orthogonal leads to identify the 

cells significantly different between groups. Logistic 

regression was applied to find the best model based on 

the highest likelihood score (chi-square). The predictive 

scores were computed from the best model and the ROC 

curves were reported. 
 

3. Results  

  

3.1 Signal averaging 
 

In average across the study population, a noise level of 

0.5ȝV was reached in both lead X and lead Z after 

averaging around 80 or 60 ranked beats, respectively. The 

noise level in lead Y could not reach 0.5ȝV due to more 

noise (0.8 ȝV for 90 beats). 
 

 
 

Figure 2. The curves of noise levels (which is the average 

value over the study population) vs the number of beats in 

the averaged signal from lead X, Y and Z. 
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3.2. QRS analysis 
 
Most of the coefficients had a non-normal distribution 

(with a P-value less than 0.05 in Shapiro-Wilk test). 

Therefore, logarithm transformation was applied to all 

coefficients. 

After applying nonparametric test, seven coefficients 

in lead X and six coefficients in lead Z showed 

significant differences between responders and non-

responders. They were cell5_6 cell4_17 cell3_32 

cell3_33 cell2_55 cell2_61 cell2_67 and cell2_38 

cell2_39 cell2_42 cell2_43 cell2_58 cell2_66, 

respectively. Only two cells (cell3_30 and cell2_43) in 

lead Y showed significant differences between 

responders and non-responders. Figure 3A shows their 

time and frequency locations. 
 
 

 
 

Figure 3. Section of the orthogonal wavelet network 

used to analyze the QRS (see Figure 1). Shaded areas are 

the locations of selected cells per lead: A) univariate 

analysis: cells were significantly different between 

responder and non-responder. B) multivariate analysis: 

cells were selected by the best-subset regression analysis. 
 

Three-parameter models (cell5_6 cell2_55 cell2_61 for 

X and cell2_38 cell2_39 cell2_58 for lead Z) were 

selected after no significant improvement on chi-square 

score. The positions of these coefficients are shown in 

figure 3B. In lead Y, two coefficients (cell3_30 and 

cell2_43) were selected, but the model was not retained 

because of lower fitting score. The predictive score for 

each lead was defined as a linear combination of wavelet 

coefficients and QRS was forced into the model. 
 

Score_X = -2.17 * cell5_6 +  1.36 * cell2_55 +  1.89 * cell2_61 - 

0.04 * QRS +  13.17     

 

Score_Y = -1.3 * cell2_43 +  0.6 * cell3_30 +  0.02 * QRS – 4.7

   

Score_Z =  -1.5 * cell2_38 - 1.57 * cell2_39 +  1.86 * cell2_58 - 

0.01 * QRS - 0.05    

 

The ROC curves based on the predictive scores are 

shown in figure 4. A 73% of sensitivity and a 71% of 

specificity were obtained from lead X. Similarly, 77% of 

sensitivity and specificity were obtained from lead Z. A 

slightly lower sensitivity (64%) and specificity (63%) 

were obtained from lead Y (not shown).  
 

 
 

 
 

Figure 4. ROC curves generated from logistic 

regression in lead X (upper) and Lead Z (lower) for the 

models with and without clinical factor, and the model 

with clinical factors only.  
 

3.3.  Adjusting the model for additional 

clinical parameters 
 

Recently, Goldenberg et al. [8] identified seven clinical 

baseline factors associated with echocardiographic 

response to CRT. These factors are: gender, non-ischemic 

etiology, left bundle branch block, QRS >150 msec, prior 
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hospitalization for heart failure, left ventricular end 

diastolic volume (LVEDV) ≥ 125 ml, and left atrial 

volume LAV < 40 ml. Adding these factors (QRS and 

LBBB were patients' selection criteria in our population 

and thus they were not included) into the best-subset 

regression analysis, only one factor, left atrial volume 

was selected into the models (interestingly LAV was 

significant regardless of the selected lead X, Y and Z). 

There is one coefficient cell2_55 was replaced by 

cell2_67 in the model combing clinical factors to 

wavelet coefficients from lead X. The other two models 

have the same coefficients.  

As described in all panels of figure 4, combining 

clinical parameters with wavelet coefficients increased 

the classification of the study population with a 81% of 

sensitivity and a 80% of specificity for the model using 

lead X, 68% of sensitivity and specificity for the model 

using lead Y, and 82% sensitivity and 80% specificity 

from lead Z. 

The areas under ROC curve are 0.88 for both lead X 

and lead Z from our wavelet model with clinical factor, a 

30% improvement was observed comparing with the 

clinical model. 

 

4. Discussions  
 

We hypothesized that heart failure patients benefiting 

from CRT have specific conduction abnormalities 

different from the patients that do not respond to such 

therapy. Using wavelet decomposition and following the 

methodological concept used for the detection of late 

potentials, we proposed to use signal averaging QRS 

technique to identify specific signal patterns associated 

with CRT benefit. Our results confirm that there are 

signal components inside the QRS characterizing 

patients responding to CRT, yet we do not have a clear 

link between these components and common conduction 

features (normal or abnormal) that make the use of  CRT 

beneficial.    

Our findings reveal that the cells showed significant 

differences between responders and non-responders in 

all three leads located around the second fourth and the 

last fourth of the QRS complex. Most of these cells are 

in high frequency bands (scale 2-3, 63-250Hz). The 

logistic regression results showed that the response to 

CRT is associated with: 1) a reduction in energy of the 

cells around the second fourth of QRS complex, 2) an 

increase in energy of the cells around the last fourth of 

QRS complex. This result may imply a specific delay in 

the fractionation of the QRS complex, where most 

energy is delivered at the end of QRS complex. We 

speculate that this delay might be associated with 

stronger ventricular asynchrony. Further investigations 

are required. 

LAV was the only clinical factor selected by the best-

subset regression analysis. The logistic regression model 

selected our wavelet coefficients before LAV, this result 

revealed that our coefficients might provide strong 

prediction on the benefit of CRT complementing clinical 

parameters. An independent validation of the model is the 

next step of this work. 

 

5. Conclusions  
 

In this study, we used an orthogonal wavelet dyadic 

network for decomposing the QRS signals of cardiac 

patients enrolled in the MADIT-CRT trial. A signal 

averaging technique was first applied to enhance the QRS 

features while wavelets were used to decompose the 

signal. We identified QRS components characterizing 

CRT responder prior to therapy.  
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