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Abstract

We study the statistics of excursions, defined as the num-

ber of beats to return to a local mean value in heart-

beat interval time series from healthy subjects and patients

with congestive heart failure (CHF). We find that the cu-

mulative distributions of excursions (of size τ ) are con-

sistent with a stretched exponential function of the form

G(τ) ∼ eaτb

with a and b constants. Also, we study the

statistics of return intervals between long excursions above

certain threshold q for both groups to explore the possibil-

ity of memory in the time organization of the extreme-size

excursions. The correlation method applied to the return

intervals shows a weak correlation for both groups with

changes as the threshold q increases. The DFA analysis

confirms the presence of correlations with scaling expo-

nents higher than the uncorrelated value (α = 0.5).

1. Introduction

Throughout the years, many studies based on nonlinear

dynamics have been applied to physiological signals [1], in

particular to the interbeat time series [2]. All these studies

revealed in general that the heartbeat behavior is nonsta-

tionary and long-range correlated [3,4], and important dif-

ferences between healthy and diseased subjects have been

reported [1, 5, 6]. Different methods to detect stationary

segments in complex time series have been proposed [7],

in particular to the study of nonstationary long-time inter-

beat records [8]. One method which is efficient and useful

to detect stationary segments is the segmentation method

(SM) proposed by Bernaola-Galván et. al. [9]. We re-

cently studied the statistical properties of excursions along

stationary segments, which were detected by the SM [10].

Our results reported that excursions are consistent with a

stretched exponential behavior of the cumulative distribu-

tion, suggesting the presence of correlations in the excur-

sion sequences.

On the other hand, studies based on the statistics of re-

turn intervals above certain threshold have revealed the

presence of long-term correlations and clustering in dif-
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Figure 1. a) Representative plot of the interbeat time series

(RR intervals) to illustrate the excursion identification. b)

Representative plot to identify the return interval between

two successive large excursions (above a given threshold).

c) Time line that represents the length of the return time in-

terval. The return time interval r will be the time between

the mean time point (Tτi
/2) of an excursion greater than

the threshold q, to the mean time point (Tτj
/2) of the next

excursion also greater than q.

ferent type of records such that financial indexes [11] and

climate records. The return interval distributions are useful

to characterize temporal properties of the events when one

is interested in the time recurrence of extreme events, for

example, earthquakes [12], the behavior of certain finan-

cial indexes [13], x-ray solar flares [14], climate records

[15], or even long heartbeat intervals [16].

Physiological systems are, in general, bounded sys-

tems, body temperature, blood pressure or heart rhythm are

some examples where the variations are consistent with the

homeostatic principle. By studding the excursions around

a local mean value, we are in the position to evaluate how

far a system’s response goes ahead, while remaining within
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Figure 2. Cumulative distribution function of excursions

τ for both groups. A slight deviation for the exponential

behavior (shuffled records) is observed in original data.

a bounded region. If we connect the return intervals ideas

with the excursion analysis, we may obtain additional in-

formation about the fact that the healthy systems are less

bounded than disease systems due to the fact that the con-

trol mechanism are still not degradated enough to give a

better response to external stimuli. In the present work,

we study the statistics and correlations of the time return

intervals of excursions above different thresholds.

2. Methods

Correlation Function.- Many processes in nature show

a long-range correlated behavior, i.e., there is a time-

dependence in the order of the events. When it happens,

we say that the event has “memory”. This kind of pro-

cesses are characterized by an autocorrelation function

Cx(s) that decays as a power law,

Cx(s) =
1

σ2
x(L − s)

L−s
∑

i=1

(xi − x)(xi+s − x) ∼ sγ (1)

where σx denotes the standard deviation, x the mean, s the

lag and γ the correlation exponent (0 < γ < 1).

The DFA method.- One method that is useful to detect

correlations in nonstationary series is the detrended fluctu-

ation analysis (DFA). To illustrate DFA method [17], we

depart from an initial time series x(i) (of length N ), first,

this series is integrated, y(k) =
∑k

i=1
[x(i) − xave], the

resulting series is divided into boxes of size n. For each

box, a straight line is fitted to the points, yn(k). Next, the

line points are subtracted from the integrated series, y(k),
in each box. The root mean square fluctuation of the inte-

grated and detrended series is calculated by means of

F (n) =

√

√

√

√

1

N

N
∑

k=1

[y(k) − yn(k)]
2
, (2)

this process is taken over several scales (box sizes) to ob-

tain a power law behavior of the form

F (n) ∝ nα, (3)

with α an exponent which reflects self-similar and corre-

lation properties of the signal. It is known that α = 0.5
corresponds to white noise (non correlated signal), α = 1
means 1/f noise and α = 1.5 represents a Brownian mo-

tion.

The segmentation method.- We use the segmentation

method proposed by Bernaola-Galván et. al. [9] to detect

stationary segments in the interbeat series. To apply the

algorithm, first we consider a slider pointer to calculate the

statistics t = µr−µl

SD
, where SD is the standard deviation,

µr and µl are the mean of the values on the right and left

side, respectively. Next, a significance level is applied to

cut the series into two new segments, as long as the means

of the two new segments are significantly different from

the mean of the adjacent segments. And then, the process

is applied recursively until the significance value is smaller

than a threshold or the length of the segment is smaller than

a minimum l0.

Excursions and Return Intervals.- Once we get the time

series segmented, we proceed to identify an excursion with

size τ if xj > x and xj+τ > x while xi > x for

j < i < j + τ or conversely xj < x and xj+τ < x
while xi < x for j < i < j + τ (see Fig. 1a), where

x represents the local mean of a given segment. Next, we

define a return interval as the elapsed time between two

excursions above some large threshold q (see Fig. 1b), for

example, proportional to the standard deviation στ of the

excursions. For a detailed explanation of the return time

see Fig. 1c.

r =
Tτi

2
+

j
∑

k=i

Tτk
+

Tτj

2
(4)

3. Results

In a previous work [10] we reported that the distribution

of excursions follows a stretched exponential function to

consider for the cumulative distribution function given by

g(x) ∼ e−aτb

, with a = 1.09 ± 0.15 (mean value ± SD)

and b = 0.91 ± 0.11 for healthy subjects and a = 1.31 ±

0.23 and b = 0.77 ± 0.13 for CHF patients. In Fig. 2a

and 2b we observe that, for shuffled data, the distribution

of excursions becomes exponential for both groups, which

suggest the presence of correlations [10].

Next, we study the return intervals defined in the previ-

ous section. In Fig. 3a and 3b we show the cumulative dis-

tributions of the return intervals for both groups of individ-
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Figure 3. Distributions of the return intervals r for both

groups for a given threshold q = 1.5σ. In a) and b), a

comparison among all the individuals of the group is made,

and also, the shuffled of the original data of every record is

shown.
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Figure 4. Distributions of the return intervals r for both

groups for several thresholds. In a) and b), the shuffled

data are represented with open symbols and scaled together

with their own original data for a better observation. Also,

in a) and b) each point represents the average value of all

the individuals of the group for each value of lag s.

uals. We found that they also follow a stretched exponen-

tial function with parameters given by a = 1.34±0.36 and

b = 0.75 ± 0.16 for healthy subjects and a = 1.38 ± 0.37
and b = 0.73 ± 0.16 for CHF patients (for a threshold

q = 1.5στ ). In the two cases, the results for shuffled

records are also shown. We notice that all the individ-

uals have a common behavior under normalization, sug-

gesting that we can pool all the individual data to improve

the statistics. Figures 4a and 4b show the distribution of re-

turn intervals in the case of three different thresholds (filled

symbols), together with their corresponding shuffled ver-

sion (open symbols). For the three thresholds cases, both

groups shows a slight different behavior to the one for the

uncorrelated shuffled data. Therefore, to evaluate the pres-

ence of correlations in the return interval series, we per-

form two proofs: Correlation function and DFA analysis.
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Figure 5. Correlation function for the return intervals for

different values of threshold q. Results for the healthy

group (circles) and CHF patients (squares) are shown.

Each point presented in the graphics represents the aver-

age value of all the individuals of the group.

The correlation proof is performed by means of the cor-

relation coefficient for a given lag s. Specifically, Fig. 5

shows the results of correlation proof for different values

of threshold q. The correlation function shows a slight dif-

ference between healthy and CHF groups. At short lag s,

the correlation function from healthy data is slightly higher

than CHF records, whereas the opposite behavior is ob-

served when the threshold is increased.

Referring to the DFA analysis (see Fig. 6), our calcula-

tions shows that the scaling exponents become closer as the

threshold size q increases. For small values of the thresh-

old (q = 0.5σ), healthy data is characterized by the scaling

exponent α = 0.66±0.06. This average value tends to de-

crease as the threshold increases. For CHF patients, we

observe α = 0.60 ± 0.05 when q = 0.5σ and this value

remains almost constant as q increases. We remark that

the scaling exponent becomes closer as the threshold size

q increases.

4. Discussion and conclusions

We have analyzed excursion sequences and return in-

tervals from stationary segments detected in hearbeat in-

terval series. Our study reveals that healthy and CHF ex-

cursion sequences and return intervals are characterized by

stretched exponential distributions with different fitting pa-

rameters. When the correlation proof is applied we found

that, for short thresholds, the healthy dynamics exhibits

higher correlation in the return time series of large excur-
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Figure 6. DFA proof for the return intervals for different

values of threshold q. Results for the healthy group (cir-

cles) and CHF patients (squares) are shown. Each point

presented in the graphics represents the average value of

all the individuals of the group.

sions.

By means of DFA analysis, we confirm the presence

of long-term correlations in return time sequences from

healthy and pathological data. The DFA analysis shows

that the scaling exponent for healthy data is slightly higher

than the CHF group for small values of q, and they tend

to be close each other as the threshold increases. These

findings suggest that there exist some kind of long range

correlations in the return interval series due to the fact that

the scaling exponents for both groups differ from white

noise.
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México.

References

[1] Goldberger A, Amaral L, Hausdorff J, Ivanov P, Peng CK,

Stanley H. Fractal dynamics in physiology: alterations with

desease and aging. PNAS February 19 2002 2002;99(Suppl

1):2466–2472.

[2] Goldberger A. Is the normal heartbeat chaotic or homeo-

static? News Physiol Sci 1991;6:87–91.

[3] Liebovitch LS, Todorov AT, Zochowski M, Scheurle D,

Colgin L, Wood MA, Ellenbogen KA, Herre JM, Bernstein

RC. Nonlinear properties of cardiac rhythm abnormalities.

Phys Rev E Mar 1999;59(3):3312–3319.

[4] Guzmán-Vargas L, Calleja-Quevedo E, Angulo-Brown F.

Fractal methods and cardiac interbeat time series. Revista

mexicana de fisica 2005;51:122–127.

[5] L.Guzmán-Vargas, E.Calleja-Quevedo, Angulo-Brown. F.

Fractal changes in heart rate dynamics with aging and

heart failure. Fluctuation and Noise Letters March 2003;

3(1):L83–L89.

[6] Guzmán-Vargas L, Angulo-Brown F. Simple model of the

aging effect in heart interbeat time series. Phys Rev E May

2003;67(5):052901.

[7] Policker Shai GAB. Non-stationary signal analysis using

temporal clustering. Neural Networks for Signal Processing

Proceedings of the IEEE Workshop 1998;304–312.

[8] Fukuda K, Stanley HE, Amaral L. Heuristic segmenta-

tion of a nonstationary time series. Phys Rev E Feb 2004;

69(2):021108.

[9] Bernaola-Galvan P, Ivanov PC, Amaral L, Stanley H. Scale

invariance in the nonstationarity of human heat rate. Phys

Rev Lett 2001;87:168105.

[10] Reyes-Ramı́rez I, Guzmán-Vargas L. Scaling properties

of excursions in heartbeat dynamics. Europhys Lett 2010;

89:38008.

[11] Wang F, Weber P, Yamasaki K, Havlin S, Stanley H. Sta-

tistical regularities in the return intervals of volatility. Eur

Phys J B jan 2007;55(2):123–133.

[12] Corral A. Long-term clustering, scaling, and universality in

the temporal occurrence of earthquakes. Phys Rev Lett Mar

2004;92(10):108501.

[13] Wang F, Yamasaki K, Havlin S, Stanley HE. Scaling and

memory of intraday volatility return intervals in stock mar-

kets. Phys Rev E Feb 2006;73(2):026117.

[14] de Arcangelis L, Godano C, Lippiello E, Nicodemi M. Uni-

versality in solar flare and earthquake occurrence. Phys Rev

Lett Feb 2006;96(5):051102.

[15] Bunde A, Eichner JF, Kantelhardt JW, Havlin S. Long-term

memory: A natural mechanism for the clustering of extreme

events and anomalous residual times in climate records.

Phys Rev Lett Jan 2005;94(4):048701.

[16] Bogachev MI, Kireenkov IS, Nifontov EM, Bunde A.

Statistics of return intervals between long heartbeat inter-

vals and their usability for online prediction of disorders.

New Journal of Physics 2009;11(6):063036.

[17] Peng CK, Havlin S, Stanley HE, Goldberger AL. Long-

range anti-correlations and non- gaussian behavior of the

heartbeat. Phys Rev Lett 1995;70:1343–1346.

Address for correspondence:

Israel Reyes Ramı́rez

Lab. Sistemas Complejos, Ed. 4 UPIITA, cub. 413,

Av. IPN 2580, Col. La laguna Ticomán,

Del. Gusravo A. Madero,
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