
A Validation Protocol for Assessing Cardiac Phase Retrieval in Intravascular

Ultrasound
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Abstract

A good reliable approach to cardiac triggering is of ut-

most importance in obtaining accurate quantitative results

of atherosclerotic plaque burden from the analysis of In-

traVascular UltraSound sequences. Although, in the last

years, there has been an increase in research of methods

for retrospective gating, there is no general consensus in

a validation protocol. In this paper, we propose an objec-

tive validation protocol based on the variability of the re-

trieved cardiac phase and explore the capability of several

quality measures for quantifying such variability. We can

notice that the residual variance of the regression correla-

tion line is robust against fraction and variabilities as far

as one can establish a pair-wise correspondence between

candidate and reference.

1. Introduction

An objective evaluation of any technique is a crucial step

to ensure the good behavior of algorithms. Checking the

accuracy of any method allows the evaluation of their per-

formance, bringing up their strengths and limitations. In

this paper we concern for the particular case of retrospec-

tive image-based cardiac phase gating methods processed

from standard non-gated sequences.

The importance of cardiac phase gating methods falls

on quantitatively assessing atherosclerotic plaque burden

and accurately predicting plaque rupture. Still, there is no

general consensus for defining a suitable ”goodness” score

providing a reliable measure of the quality of the algorithm

we are evaluating. The first methods developed for retro-

spective ECG-gating [1, 2] reported comparisons between

volumetric measures obtained from off-line sampling of

sequences and on-line ECG-triggered acquisitions. How-

ever, such validation protocol requires ECG-gating sys-

tems for prospective image capture, which are not always

available and increase acquisition time up to three times

[1]. In the absence of ECG-gated acquisitions, a stan-

dard well-defined methodology for comparing gating algo-

rithms (image-based or not) is not available. Many meth-

ods base on quality assessment of longitudinal cuts appear-

ance [3–6]. However, this inspection is subjective and sus-

ceptible of changes depending on the angle chosen for in-

spection. As well, it does not allow comparison among

methods. Quantitative measures are objective but there is

no standard validation protocol for assessing the accuracy

and robustness of cardiac phase gating techniques [7, 8].

Such heterogeneity in validation protocols makes faithful

comparison across methods a difficult task.

Since retrospective ECG-samplings can be delayed from

the gold standard by a constant shift and still successfully

retrieve cardiac phase, an objective quality measure should

only measure the variability in the sampling. In this paper

we propose a validation protocol based on the variability

of the retrieved cardiac phase. We explore the capability

of several quality measures for quantifying such variabil-

ity. The remaining of the paper is structured as follows:

In section 2 we detail the validation protocol we propose.

In section 3 we explore the performance of different mea-

sures. Finally, conclusions are exposed in section 4.

2. Quality measures

An ideal detector, suitable for its application in clinical

practice, should produce stable phases. That is, it should

always sample the same cardiac cycle fraction. In this con-

text, one should measure the variability (variance) of a can-

didate sampling with respect a reference (or gold standard)

one, which corresponds to the ground truth. Thus, the vari-

ance would indicate how spread we are aiming a target. In

order to quantify the deviation between the sampling and

the ground truth, we have considered two quality scores

reported in the literature: signed distance to the closest ref-

erence sample [7] and relative distance to the right of each

reference sample [8]. We have also determined residuals of

the linear regression correlation of reference against can-

didate samplings.

We define gsk the gold standard sampling and

Lgsk = gsk+1
− gsk the gold standard cycle, which

corresponds to the length of the interval of each pair of
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gold standard positions.

2.1. Signed nearest neighbor

Let ck be the detected sample positions and consider gsk

the closest gold standard sample position for each ck. For

each pair of sample positions, we define the following dis-

tance:

ENk = ck − gsk

The distances for all frames provide a distance map for

each sequence. The interval of standard deviation over all

sampled frames detects delayed or forwarded samplings.

Thus, we define the Signed Nearest Neighbor as the stan-

dard deviation (std) of the former distances:

Signed Nearest Neighbor = std(ENk)

Notice that this interval range is [−max(Lgsk)
2 ,

max(Lgsk)
2 ].

2.2. Phase fraction

Consider now, for each gsk, the right closest detected

sample ones, namely rk. For each pair of sample positions,

we define the following distance:

ERk =
rk − gsk

Lgsk
∗ 100

This measure provides, for each k, the fraction of the

gold standard k-cycle. In that sense, the interval of stan-

dard deviation for ERk, ∀k, also detects delays samplings.

Again, we define the Phase Fraction as the standard devia-

tion of ER distances:

Phase Fraction = std(ERk)

Notice that in this case, the interval range is [0, 100].

Figure 1 graphically shows these two distances. The plot

on the top shows three examples of EN , while on the bot-

tom, the formula for ER is explained.

Figure 1. Near and right distances

2.3. Linear regression residuals

The goal of retrospective ECG-gating techniques is to

produce detectors sampling at the same cardiac phase.

Thus the difference between gold standard samplings and

automatic ones should be, at most, a constant shift. Lin-

ear regression correlation models this relationship between

both signals [9]. If gold standard and detector samplings

have the same number of points, we can compute the lin-

ear regression correlation of one signal against the other

obtaining the following model:

Y = aX + ε

where X corresponds to the automatic sampling and Y

corresponds to the gold standard. Linear regression es-

timates the model parameter a and ε corresponds to the

adjustment error in the model. Errors ε ∼ N(0, σ2) are

assumed to be uncorrelated and distributed with mean 0
and constant (but unknown) variance.

In order to appreciate the differences between both sig-

nals and their variation, residuals are useful for detecting

failures in model assumptions. Residuals are computed

as the differences between the predicted value (extracted

from the regression line) and the observed one (extracted

from the plot of one signal against the other one). Mathe-

matically, given a set of samples (xi, yi) and the regression

parameters ai, the residuals are computed as follows:

εi = yi − xi ∗ ai

Figure 2 illustrates residuals computation. Black dots cor-

respond to the automatic sampling detections against the

gold standard one. In red, we plot the regression line and

the residuals computation is illustrated in the detail.

We consider the residual variance since it provides in-

formation about the correlation between X and Y :

Linear Regression Residuals = std(εi)

If they are perfectly related then there is no residual vari-

ance.

3. Experiments

This section is devoted to the assessment of the proposed

measures as quantitative goodness measures for retrospec-

tive ECG-gating.

3.1. Experimental setting

The performance of the different proposed measures has

been explored on a set of synthetic samplings covering dif-

ferent cardiac cycle fractions and variabilities. The signal

playing the role of reference signal (or gold standard) is
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Table 1. Ranges for each quality measure of all the initial shifts and variability from 1 to 5

Variabilities (1:5)

Signed Nearest Neighbor 2.20±2.37 3.68±2.27 4.68±1.77 5.24±1.24 5.52±0.78

Phase fraction 2.19±2.38 3.68±2.28 4.61±1.67 5.28±1.25 5.62±0.79

Residuals 1.04±0.01 2.02±0.02 3.03±0.02 4.01±0.03 5.00±0.03

Table 2. Ranges for each quality measure of all the initial shifts and variability from 6 to 10

Variabilities (6:10)

Signed Nearest Neighbor 5.66±0.42 5.72±0.21 5.82±0.08 5.74±0.06 5.77±0.03

Phase fraction 5.72±0.43 5.78±0.21 5.72±0.09 5.79±0.06 5.77±0.03

Residuals 6.02±0.03 7.01±0.04 7.98±0.08 9.02±0.07 9.99±0.08

Figure 2. Linear Regression Correlation and residuals il-

lustration

sampled every 20 frames and the candidate signals vary

their initial shift from 1 to 20 and the variability from 1 to

10.

If RSig is the reference signal, S = 1, . . . , 20 is the ini-

tial shift and V = 1, . . . , 10 corresponds to the variability,

we compute synthetic candidate signals (CSig) as:

CSig(S, V ) = RSig + S + rand ∗ V

where rand follows a standard uniform distribution on the

open interval (0, 1).
Notice that in the synthetic experiments, the variability

corresponds to the error:

std(CSig −RSig) = std(S + rand ∗ V ) = std(rand)

For that, we have compared the standard deviation of the

synthetic data to each quality measure. A good quality

measure should detect the variability independently on the

phase we are sampling.

3.2. Results

Figure 3 graphically shows the standard deviation of

each proposed measure as the parameters change. Fig-

ure 3(a) shows the measures from the literature and fig-

ure 3(b) plots the new proposed one. Crosses in black in

both plots correspond to the synthetic variability. In fig.

3(a) we present the Signed Nearest Neighbor (Near) qual-

ity measure in green and the Phase Fraction (Right) qual-

ity measure in red. In fig. 3(b) we show the Linear Re-

gression Residuals (residuals) in magenta. We can observe

that Signed Nearest Neighbor and Phase Fraction strongly

depend on the initial shift and they are opposed measures.

For no shift, Nearest Neighbor properly detects the varia-

tion, while worsens for shifted samplings until the middle

of the phase. On the contrary, Phase fraction properly de-

tects the variation for shifted samplings while variability

affects the detection in no shifted samplings.

Tables 1 and 2 show the ranges of the above plots. That

is, for each variability, ranging from 1 to 5 in table 1 and

from 6 to 10 in table 2 we compute the mean and standard

deviation among all the initial shifts (from 1 to 20). Notice

that the first two quality measures have a high standard de-

viation for small variabilities and they stabilize with large

ones. However, the mean does not correspond to the real

variability. On the contrary, the ranges for Linear Regres-

sion Residuals cases coincide to the ground truth, that is

the mean corresponds to the variability and the standard

deviation is very small (up to 0.08).

4. Conclusions

From our simulations, we could conclude that the met-

rics related to distances are sensitive to the shift consid-

ered. Meanwhile, the variance of the residuals are robust

against fraction and variabilities as far as one can establish

a pair-wise correspondence between candidate and refer-

ence. Furthermore, we will investigate these measures re-
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(a)

(b)

Figure 3. Standard deviation of different measures against

the parameters.

garding how to establish a practical metric and also study

false positive and false negative detection effects.
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