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Abstract

The aim of this paper is to develop a tool to con-

struct initial conditions for a cardiac propagation model,

in which phase singularities are positioned at predefined

locations. Our approach relies on the eikonal-diffusion

equation (extended to handle reentrant activations) to gen-

erate phase maps describing reentries around phase singu-

larities. Through a mapping between phase and cell state,

these phase maps are used to create initial conditions from

which evolution is simulated in the monodomain frame-

work.

This method was applied to initiate functional reentries

in an atrial model. Reentrant circuits were placed at 24

different anatomical locations. Phase singularities tracked

during the simulations meandered in the vicinity of the de-

sired locations specified in the eikonal problem. The re-

sults suggest that this tool could help in the creation of a

library of different forms of simulated arrhythmias.

1. Introduction

Phase singularity analysis provides a tool to quantify the

complex spatio-temporal behavior observed in computer

models or animal models of cardiac arrhythmia [1]. Dur-

ing a reentrant activation, a phase singularity is located at

the center of the rotating wave or at the pivot point of a

U-turn. Tracking phase singularities in simulated or exper-

imental data is a well established process [2]. It enables

to count the number of simultaneous wavelets and iden-

tify the location of arrhythmogenic regions associated with

reentries or wavebreaks.

The associated inverse problem consists in construct-

ing an initial condition for a reaction-diffusion system (de-

scribing electrical propagation in the heart) with a given

spatial distribution of anatomical/functional reentries. This

problem is inspired by the desire to reproduce the wavelet

dynamics measured in experiments or in patients when

only limited information is available (typically pathways

of reentry) [3]. Another application is to facilitate the initi-

ation of a large number of episodes of the same arrhythmia.

This would help investigate the effect of intra- or interpa-

tient variability in simulation studies.

We aim to tackle this problem by solving an eikonal-

diffusion equation that generates phase maps. This equa-

tion predicts activation times based on tissue conduction

properties (only depolarization is considered). In a pre-

vious work, the eikonal-diffusion equation was extended

to handle anatomical/functional reentries and wavefront

collisions [4]. A dedicated finite-element-based method

was developed to solve this equation on a triangular mesh.

Boundary conditions on activation times were used to

specify pathways of reentry.

In this paper, this eikonal approach is applied to initi-

ate functional reentries in a simplified atrial model. The

ability to initiate spirals waves at predefined locations is

evaluated. Monodomain simulations are run to track the

evolution and assess the stability of phase singularities.

2. Methods

2.1. Models of cardiac propagation

The propagation of the cardiac impulse in the my-

ocardium can be described by the evolution of the mem-

brane potential field Vm(x, t). According to the mon-

odomain theory, this evolution is governed by a reaction-

diffusion equation [5]:

Cm
∂Vm

∂t
= β−1 ∇ · σ∇Vm − Iion (1)

where Cm is the membrane capacitance per unit area of

membrane, β is the area of membrane per unit volume,

σ is the (effective) conductivity tensor, and Iion is the

membrane ionic current. No-flux boundary condition is

assumed.

Activation time τ can be defined as the time at which Vm

crosses the threshold −60 mV when the time derivative of

Vm is positive. The resulting field τ(x) forms an activation

map. An equation for this field can be derived from the

monodomain equation using singular perturbation theory,

leading to the so-called eikonal-diffusion equation [4, 6]:

‖c∇τ‖ = 1 + ∇ · (D∇τ) . (2)

ISSN 0276−6574 863 Computing in Cardiology 2010;37:863−866.



The link with the monodomain equation is obtained

through the relations:

c =

(

kmσ

βCm

)1/2

and D =
σ

βCm
. (3)

The membrane model-dependent parameter km is such

that the conduction velocity (CV ) of a plane wave is

CV =
√

kmσ/βCm. No-flux boundary condition on τ
is assumed [6].

The eikonal-diffusion equation is still valid for reen-

trant activations. To account for the periodic nature of

wavefront propagation, the phase transformation φ =
exp(2πiτ/T ) is applied, where T is the period of

reentry [4]. In this complex formulation, the trans-

formed eikonal-diffusion equation can handle anatomi-

cal/functional reentries as well as wavefront collisions. A

dedicated iterative finite-element-based method has been

developed to solve this equation on a triangular mesh [4].

The algorithm starts with an initial estimate of a reentrant

activation map reproducing the desired qualitative or topo-

logical features (such as reentrant pathways). The activa-

tion map is then corrected by successive Newton iterations

applied to the transformed (non-linear) eikonal-diffusion

equation [4]. The period T for which a reentrant solution

exists (for given conduction and membrane properties) is

automatically determined as part of the process [7] (only

the phase 2πτ/T , which is defined modulo 2π, is used un-

til then).

2.2. Simulation of reentries

The procedure for initiating a spiral wave at a predefined

location on a triangulated surface representing the cardiac

tissue is as follows:

1. Draw a closed curve representing the presumed trajec-

tory of the phase singularity on the surface (Fig. 1A). The

interior region of the curve is typically composed of a strip

of triangles. The length of the curve is intended to be

roughly the wavelength of the depolarization wave.

2. Set τ to values from 0 to T along the closed curve (ac-

cording to the curvilinear coordinate).

3. Interpolate τ in the entire surface by solving the

Laplace problem ∆τ = 0 with the boundary condition

defined at step 2. Discontinuities are handled by phase

transformation, like for the eikonal-diffusion problem [7].

4. Solve iteratively the eikonal-diffusion equation, start-

ing with the interpolated activation map computed at step

3 as initial condition (Fig. 1B). During this step, the trian-

gles in the interior region of the curve (“spiral core”) are

discarded.

5. Create a mapping between activation time and cell state

using a single-cell simulation of a cardiac cell paced at cy-

cle length of T [7].
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Figure 1. Illustration of the method in a model of hu-

man atria (right-anterior view): (A) Reentrant pathway, in

red. (B) Activation map obtained by solving the eikonal-

diffusion equation; 20 isochrones are shown as dashed

lines. (C) Initial condition constructed from the activation

map. (D) Trajectory of the phase singularity (in red) re-

sulting from the monodomain simulation. LA: left atrium;

RA: right atrium; SVC: superior vena cava.
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Figure 2. Initiation of functional reentry at three different locations in an atrial model (top view). (A)–(C) Activation maps

obtained by solving the eikonal-diffusion equation; 20 isochrones are shown as dashed lines. (D)–(F) Membrane potential

maps after about one period simulated from the initial condition constructed from the activation map just above. The red

dot indicates the location of the phase singularity. LA: left atrium; RA: right atrium; MV: mitral valve; TV: tricuspid valve;

IVC: inferior vena cava.

6. Create an initial condition (tissue state) for the mon-

odomain equation by applying the mapping (step 5) to the

activation map (step 4), see Fig. 1C.

7. Run a monodomain simulation from the initial condi-

tion (step 6).

8. Track the evolution of phase singularities (Fig. 1D) us-

ing a method adapted from Iyer et al. [2].

This approach was applied to a simplified model of the

human atria (Fig. 1A). The atrial epicardium was repre-

sented by a triangular surface mesh (13,798 nodes). Mon-

odomain simulations were run in 3D cubic mesh (748,741

nodes) representing the atrial myocardium. The coarse

atrial surface model lied within the bulk of the 3D model

to enable extrapolation of tissue state from 3D-surface to

full 3D.

Parameters for monodomain propagation were Cm =
1 µF/cm2, β = 2000 cm−1 and σ = 4.2 mS/cm (uni-

form isotropic). Membrane kinetics was described by the

Courtemanche et al. model [8]. The L-type calcium cur-

rent reduced by 75% to reduce action potential duration

and stabilize functional reentries. Relation (3) was used

to compute the parameters of the corresponding eikonal-

diffusion equation.

3. Results

Twenty-four reentrant pathways were drawn manually

on the atrial surface using an interactive tool developed

in Matlab (Fig. 1A). Pathway length was 10.2±0.5 cm,

slightly longer than the wavelength of depolarization

waves (conduction velocity× effective refractory period),

which was about 8.8 cm. The eikonal-diffusion problem

was solved in each case. The resulting activation maps are

shown in Figs. 2A–C for three different examples of reen-

trant pathways. These maps constitute a plausible extrapo-

lation of the activation times specified along the reentrant

pathway.

Simulations were run from the initial condition con-

structed from the computed activations maps. Reentrant

activity was simulated for 3 s. Membrane potential maps

illustrating the dynamics of spiral waves are represented in

Figs. 2D–F. The phase singularity meandered in the vicin-

ity of the desired location specified in the eikonal problem

(Fig. 1D). The other end of the depolarization wave was

anchored around an anatomical obstacle, typically a valve.

The distance between the midpoint of the initial path of

reentry and the center of gravity of the phase singularity

trajectory was 1.3±0.9 cm. There were two exceptions in

which the reentry self-terminated within 1 s.

4. Discussion and conclusions

The eikonal-diffusion equation has been used in previ-

ous works to simulate paced or normal macroscopic prop-

agation in the heart [6]. We extended this approach to han-

dle reentrant activity [4]. In this paper, its application to the

initiation of spiral waves at predefined locations is investi-
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gated. The results demonstrate the ability to flexibly design

simulations reproducing global, macroscopic information

about wavelet dynamics (location of a spiral wave, possi-

bly a mother rotor). This information could be obtained

from endocardial recordings in patients. Future works are

needed to test the approach when a larger number of phase

singularities are present.

Spirals can be initiated by cross-shock stimulation.

However, this requires adjustment of the time interval be-

tween the first and the second stimulation, as well as the

simulation of a complete paced beat. Vulnerability win-

dows are often short. Another advantage of the eikonal

approach is the ability to control the location of both ends

of the depolarization wave (for example, one phase singu-

larity and an end anchored around one of the anatomical

obstacles).

The method is currently limited to 3D models with small

thickness (such as the atria) since the eikonal solver was

implemented for 3D surface only. While anisotropy was

not introduced for the sake of simplicity, previous works

suggest that the eikonal approach sill applies in the general

inhomogeneous anisotropic case [4]. Note that an initial

condition computed assuming uniform conduction proper-

ties could also be used to run a simulation in an anisotropic

model.

The eikonal-diffusion model does not need to include

microscale anatomical details; a coarse mesh can be used.

The simulation is eventually performed in a reaction-

diffusion model incorporating a full description of the con-

duction properties. Inaccuracies in propagation patterns

are corrected in the course of the first period of reentry.

This tool could help in the development of dedicated

models aimed at better understanding clinical case reports,

as well as in the creation of a library of different forms of

simulated arrhythmias.

Acknowledgements

This research is supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC). The

author thanks Alain Vinet (Université de Montréal) for
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