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Abstract

Mathematical models of cardiac action potential (AP)

dynamics are useful for studying the formation of dynam-

ically significant patterns such as alternans and conduc-

tion block. A closed-loop observer is an augmented ver-

sion of a mathematical model, in which experimental data

are supplied to the model through feedback. In this study,

tools for observer analysis were applied to a two-variable

Karma model of AP dynamics. For a single-cell system, it

was confirmed that membrane potential data could be used

to reconstruct the system state, and that Luenberger feed-

back could stabilize the observer. Next an observer with

a 1D geometry was tested with microelectrode membrane-

potential data from a 2.1cm in vitro canine Purkinje fiber.

It was shown that the observer produced more accu-

rate AP duration (APD) estimates than the model by it-

self. These reconstructed quantities could be used to pro-

vide enhanced information to anti-tachyarrhythmic stimu-

lus protocols that depend on real-time measurements.

1. Introduction

Research into the mechanisms underlying lethal cardiac

arrhythmias has been facilitated by a variety of experimen-

tal measurement techniques, including electrode record-

ings, optical mapping, and patch clamping. Typically, ex-

perimentalists encounter limits in the number of quanti-

ties and measurement sites that they can monitor during

an in vitro or in vivo experiment. A complementary ap-

proach is to perform computer simulation studies on rel-

evant mathematical models, such as ion-channel models.

These models allow researchers to examine the interplay

between variables and the formation of arrhythmias more

thoroughly than is possible in a laboratory setting. One

way to combine data collection and mathematical model-

ing is to build a closed-loop observer, a type of data-driven

mathematical model that has been used frequently in engi-

neering studies but has been applied less often to models

of AP dynamics [1, 2]. A possible benefit of an observer

is that it could serve as a set of “virtual sensors” that gen-

erates estimates of membrane potentials away from sens-

ing electrodes or allows ionic fluxes to be reconstructed

from membrane-potential data. Another important appli-

cation is using an observer to improve the performance

of a real-time feedback algorithm that computes timings

of anti-tachyarrhythmic stimuli based on recent measure-

ments of cardiac activity.

In the present study, an observer was designed by

augmenting the two-variable Karma model [3, 4] with

Luenberger-type feedback. Observability Grammians

were computed for a single-cell Karma model to determine

whether the membrane potential variable or the refractory

variable is the better choice for reconstructing the initial

state of the model. Next, a restricted search of stabiliz-

ing observer gain values was used to determine gains that

were optimal in the sense of minimizing the 2-norm of the

closed-loop eigenvalues of the single-cell model. These

results were extended to a more practical case, wherein a

106-cell observer was applied to membrane-potential data

from microelectrodes embedded in a 2.1cm in vitro canine

Purkinje fiber.

2. Methods

The two-variable Karma model [3,4] was chosen, due to

its simplicity, as the basis for the observer. The equations

were

Vt = γVxx +
1

τV
f(V, n) − c i, nt =

1

τn
g(V, n), (1)

where V (x, t) is the membrane potential (in mV) at loca-

tion x at time t, n(x, t) is the refractory variable (dimen-

sionless), and i(x, t) is the stimulus current (in µA cm-2).

f and g are defined as

f(V, n) = −V − Vb + (ν − nM )

(

∑3

j=0
cjV

j

)

,

g(V, n) =
1

b
θ(V − Vn) − n,

where θ(·) is the Heaviside function. No-flux boundary

conditions, Vx(0, t) = Vx(L, t) = 0, were assumed. Ini-

tial parameter values were chosen similarly to those from
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a previous study [5], but were adjusted to give a better

match to measured conduction velocities, resulting in: γ =
0.005cm2 ms-1, τV = 0.7ms, c = 1cm2 µF-1, τn = 170ms,

Vb = 90mV, ν = 4, M = 10, b = 0.7059, Vn = −65mV,

c0 = 107.8831mV, c1 = −0.1319, c2 = −0.0465mV-1,

and c3 = −3.52 × 10−4 mV-2. Eliminating the depen-

dence on x produced a single-cell version of the equations.

Eq. (1) was discretized with a forward-Euler scheme,

using Fxx(x, ·) ≈ (F (x + ∆x, ·) − 2F (x, ·) + F (x −
∆x, ·))/(∆x)2. Default step sizes were ∆t = 0.008ms

and ∆x = 0.02cm. Cells and fibers simulated in Matlab

with the Karma model were paced by applying a periodic

train of rectangular pulses to cell 1 with a stimulus value

of −1120 µA cm-2, and a stimulus duration of 1ms.

For an N -cell fiber, the state vector is

z(k) = [V1(k) . . . VN (k) n1(k) . . . nN (k)]T ,

with discrete time index k ∈ {0, 1, 2, . . .}. Suppose that

zo(k) is a known solution to the discretized Eq. (1) for a

reference input io(k), zact is a vector of real-world counter-

parts to the model-based elements of z, and that z̃ = zo−z,

with z̃act = zo − zact. It was assumed that the vector of

measured variables available for the observer design could

be written as yact = Czact, where C ∈ R
No×2N and

No ∈ {1, 2, . . . , 2N}. The observer error was defined as

e = z̃act − z̃, and the observer feedback gain was chosen

as a matrix L ∈ R
2N×No . The Karma model was con-

verted to a closed-loop observer by adding the Luenberger-

type feedback term ∆tLCe(k) to the discretized version of

Eq. (1).

For the idealized case where the measured and mod-

eled stimulus currents are identical and zact(k) satis-

fies the Karma model equations, the observer error dy-

namics linearized about zo have the form e(k + 1) =
(A(k) − LC)e(k), where A(k) is the time-varying Ja-

cobian for the open-loop system. The system inte-

grated over one basic cycle length (BCL) is ej+1 =
(

∏kj−1+BCL/∆t
k=kj

(A(k) − LC)
)

ej = Aintej . Here, kj is

the time index at the start of the jth BCL.

For the single-cell model, observability Grammians

were computed to determine which of the variables, V or

n, is a better choice for reconstructing the state from an

available measurement. The standard observability Gram-

mian definition for linear-time-varying systems was ap-

plied to a non-dimensionalized version of A(k) derived

previously [6], assuming L = 0. Two cases were con-

sidered: in the first, only measurements of the membrane

potential were used (i.e., C = [1 0]), and in the second,

only measurements of the refractory variable were used

(C = [0 1]).

Keeping the eigenvalues of A(k) − LC inside the unit

circle is not a sufficient condition for system stability.

Hence, to quantify the effect of different feedback con-

figurations for L 6= 0, a methodology was established

for computing the eigenvalues λ1, . . . , λ2N of Aint, which

is time-invariant when evaluated on a periodic zo trajec-

tory. First, a fixed point of the time-integrated Karma

model was estimated using a Newton-Krylov solver [7].

Aint was computed using a finite-difference approach [7]

modified to apply perturbations scaled relative to the mag-

nitude of each state-vector element. A central-difference

method was then applied to reduce the impact of errors in

the fixed-point estimate on the Jacobian [8]. Eigenvalues

were determined with the eig function in Matlab.

To test the applicability of the observer concept, data

were obtained from a December 17, 2002 in vitro experi-

ment on a 2.1cm beagle Purkinje fiber. The fiber was paced

periodically from one end with a biphasic electrode, and

membrane potential recordings were made with six mi-

croelectrodes spaced approximately evenly along the fiber,

with a 0.001s sampling interval. Raw data were processed

by subtracting out the vertical offsets of each of the six

signals, and converting to voltage units by assuming a rest-

ing potential of −90mV and a base-to-peak amplitude of

125mV. The data were zero-order-hold interpolated when

used in computer simulations.

This experimental setup was mimicked through simu-

lations of the Karma model with a 106-cell fiber, with

initial condition V = −85mV and n = 0 for all cells.

The microelectrodes were assumed to be located at cells

16, 31, 46, 61, 76, and 91 (x = 0.32, 0.62, 0.92, 1.22,

1.52, and 1.82cm). Tests were conducted to determine

whether membrane-potential measurements could be ap-

proximated using feedback from only some of the sen-

sor signals. To quantify the performance of the ob-

server, an APD error measure was calculated as APDE =
1

3

∑

m∈{31,61,91}
1

J

∑J
j=1

|APDact
m,j − APDm,j |, where

m is the cell index, j is the AP index, J is number of APs

in the range of 3000 to 4100ms, and the quantities inside

the absolute value are the measured and observer-derived

APDs, respectively. APDs were judged by the crossings

of the rising and falling edges with the line V = −78mV,

which was chosen to approximate APD90 for this data set.

3. Results

A(k) was first evaluated on a trajectory produced by

simulating the single-cell (open-loop) model with a BCL

of 230ms. Fig. 1 shows that the resulting minimum singu-

lar values of the observability Grammian are greater for the

case of measuring V than for measuring n. This compari-

son holds for both shorter (Fig. 1(a)) and longer (Fig. 1(b))

Grammian time ranges.

In Fig. 2(a), it can be seen that for a search of L11 in the

range of -1.7 to 0, increasing by increments of 0.1, with

L21 = 0, a minimum in the two-norm of the eigenvalue
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Figure 1. Minimum singular values of observability

Grammians for the single-cell model, with a Grammian

time window of: (a) 1/10 BCL (23ms) (b) one BCL

(230ms). Crosses indicate an output vector of C = [1 0]
and squares indicate C = [0 1]. There are only two

squares per subplot, since for C = [0 1] the majority

of the minimum singular values are very close or equal to

zero. Scaled versions of the corresponding V (dashed) and

n (dotted) trajectories are shown for reference.
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Figure 2. Two-norms of eigenvalue vectors (e.v.), showing

the impact of different valuations of the gain vector L =
[L11 L21]

T on a single-cell model with a BCL of 230ms:

(a) norms for selected values of L11, with L21 = 0, (b)

norms for selected values of L21, with L11 = 0.

vector [λ1 λ2]
T was attained for L11 = −0.8. Setting the

other gain element to zero and testing L21 from 0.001 to

0.01, increasing by increments of 0.001, revealed two lo-

cal minima in the eigenvalue norm, with the smallest norm

achieved at L21 = 0.008, as shown in Fig. 2(b). Values in

the range L11 > 0 or L21 < 0 sometimes produced con-

vergent fixed-point estimates, but did not stabilize the ob-

server about a 1:1 trajectory of the Karma model. Increas-

ing L21 through 0, 0.0002, 0.0004 for L11 = −0.8 caused

the two-norm to decrease from 0.0055 to 1.4456×10−5.

For the 106-cell fiber, tested configurations included

gains of the form Lm,m = ξ1, with all other entries

zero (signifying Vm-to-Vm feedback), and LN+m,m = ξ2,

all other entries zero (Vm-to-nm feedback), with m ∈
{16, 46, 76}. The values of the constants ξ1,2 were ad-

justed by trial and error. Feeding back n was not tested,

since n is not measurable. Figs. 3(a) and (b) show that the

feedback signal was on the order of the pacing pulse, and

eventually settled into a nearly periodic pattern. Compar-

ing Figs. 3(c),(e) to (d),(f), it can be seen that the closed-

loop case provided more accurate estimates of membrane

potentials than the model by itself. The closed-loop ob-

server also reduced APDE from 69.5ms to 12.9ms. How-

ever, it greatly overestimated the plateau potential, which

could most likely be improved through better calibration of

the model. Setting ξ1 = 0, results of Vm-to-nm feedback

were inferior to those of Fig. 3 for ξ2 = 0.0005, while val-

ues ξ2 ≥ 0.0008 appeared to destabilize the observer.

4. Discussion and conclusions

The observability results demonstrate that, for the

single-cell Karma model, it is more useful to measure V
than n in order to reconstruct the state of the system. This

is fortunate, considering that membrane-potential mea-

surements are generally the only type that can be easily ob-

tained from real tissue, whereas n is not a practically mea-

surable quantity. The single-cell results in Fig. 2 showed

that V -based observer feedback applied to either the V - or

n-dynamics could at least stabilize the system about a 1:1

trajectory. This gave confidence that the observer could be

used to track real membrane-potential measurements.

The fiber results in Fig. 3 established that Luenberger

observer feedback can be used to force the Karma model

to follow a trajectory, namely a selected set of microelec-

trode action-potential measurements, that is not native to

the model. Due to the absence of Vm-to-nm feedback, the

scheme is similar to that of Rappel, et al. [5], where V
from the previous period has been replaced in the present

study by the measured membrane potential. Here, feed-

back was applied for a different purpose, to reconstruct

data rather than to eliminate alternans [5].

One distinction from other works involving Luenberger

observers for APD or AP models [1, 2] is that here, the

observer was applied to real data. Another difference is

that previous studies [1,2] used linear-time-invariant (LTI)

methods (e.g., pole placement) that generated one observer

feedback pulse per BCL. This study takes advantage of the

fact that, unlike a feedback-controlled stimulator that must

interact with real tissue, an observer has fewer restrictions

on how and when feedback signals are applied. A disad-

vantage is that the design problem of choosing L to affect

the eigenvalues of Aint is generally more challenging than

the typical LTI case.

This study was intended as a starting point for further in-

vestigations into observer design. The design and analysis

tools could be extended to the multicellular case to obtain
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Figure 3. Comparison of open-loop model ((a),(c),(e)) and closed-loop observer ((b),(d),(f)) with ξ1 = −25, ξ2 =0,

and BCL = 230ms. In the closed-loop case, Vm-to-Vm feedback (initiated at 450ms) was applied at 3 of 6 measurement

locations, at cells 16, 46, and 76 (x = 0.32, 0.92, and 1.52cm). (a),(b): observer feedback signal vs. time at cell 46, along

with pacing pulse applied to cell 1 of the simulated system. (c),(d): simulated and measured membrane potentials vs. time

at cell 61 (x = 1.22cm), which was a non-feedback location. (e),(f): simulated membrane potentials vs. time and distance

along the fiber. In (b) and (d), the remaining feedback or AP time-series curves were similar but were omitted for brevity.

insights into best sensor placement. If the observability re-

sults in Fig. 1 turn out to hold for ion-channel models, then

measurements of V can be used to reconstruct ionic flows

through the cell membrane. To be practically useful, ob-

servers must be designed to work with more complicated

measured AP patterns, such as alternans.

Overall, the results show that a closed-loop observer is

a viable approach for estimating variables (in this case V
and n) at locations away from the measurement electrodes.

Beyond data reconstruction, the observer could be used

to enhance the performance of an alternans-suppressing

feedback controller by providing estimates of unmeasur-

able variables. The observer also provides a complemen-

tary method to model-parameter estimation, since accurate

calibration of parameters cannot generally address all dis-

crepancies between modeled and measured behavior.
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