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Abstract

Mathematical models of cardiac action potential (AP)
dynamics are useful for studying the formation of dynam-
ically significant patterns such as alternans and conduc-
tion block. A closed-loop observer is an augmented ver-
sion of a mathematical model, in which experimental data
are supplied to the model through feedback. In this study,
tools for observer analysis were applied to a two-variable
Karma model of AP dynamics. For a single-cell system, it
was confirmed that membrane potential data could be used
to reconstruct the system state, and that Luenberger feed-
back could stabilize the observer. Next an observer with
a 1D geometry was tested with microelectrode membrane-
potential data from a 2.1cm in vitro canine Purkinje fiber:
It was shown that the observer produced more accu-
rate AP duration (APD) estimates than the model by it-
self. These reconstructed quantities could be used to pro-
vide enhanced information to anti-tachyarrhythmic stimu-
lus protocols that depend on real-time measurements.

1. Introduction

Research into the mechanisms underlying lethal cardiac
arrhythmias has been facilitated by a variety of experimen-
tal measurement techniques, including electrode record-
ings, optical mapping, and patch clamping. Typically, ex-
perimentalists encounter limits in the number of quanti-
ties and measurement sites that they can monitor during
an in vitro or in vivo experiment. A complementary ap-
proach is to perform computer simulation studies on rel-
evant mathematical models, such as ion-channel models.
These models allow researchers to examine the interplay
between variables and the formation of arrhythmias more
thoroughly than is possible in a laboratory setting. One
way to combine data collection and mathematical model-
ing is to build a closed-loop observer, a type of data-driven
mathematical model that has been used frequently in engi-
neering studies but has been applied less often to models
of AP dynamics [1,2]. A possible benefit of an observer
is that it could serve as a set of “virtual sensors” that gen-
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erates estimates of membrane potentials away from sens-
ing electrodes or allows ionic fluxes to be reconstructed
from membrane-potential data. Another important appli-
cation is using an observer to improve the performance
of a real-time feedback algorithm that computes timings
of anti-tachyarrhythmic stimuli based on recent measure-
ments of cardiac activity.

In the present study, an observer was designed by
augmenting the two-variable Karma model [3, 4] with
Luenberger-type feedback. Observability Grammians
were computed for a single-cell Karma model to determine
whether the membrane potential variable or the refractory
variable is the better choice for reconstructing the initial
state of the model. Next, a restricted search of stabiliz-
ing observer gain values was used to determine gains that
were optimal in the sense of minimizing the 2-norm of the
closed-loop eigenvalues of the single-cell model. These
results were extended to a more practical case, wherein a
106-cell observer was applied to membrane-potential data
from microelectrodes embedded in a 2.1cm in vitro canine
Purkinje fiber.

2. Methods

The two-variable Karma model [3,4] was chosen, due to
its simplicity, as the basis for the observer. The equations
were

1 1
Vi=Vew + :f(‘/’ n)—ci, ng=—gVin), (1)
\%4 n
where V (z,t) is the membrane potential (in mV) at loca-
tion x at time ¢, n(x,t) is the refractory variable (dimen-
sionless), and i(x,t) is the stimulus current (in gA cm™).
f and g are defined as

Jj=0

3 ,
f(Vin) = =V = Vy + (v —nM) (Z, ch3> ,
1
g(Vin) = EQ(V —Vu) —n,
where 6(-) is the Heaviside function. No-flux boundary

conditions, V;(0,t) = V,(L,t) = 0, were assumed. Ini-
tial parameter values were chosen similarly to those from
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a previous study [5], but were adjusted to give a better
match to measured conduction velocities, resulting in: v =
0.005cm” ms™!, 7, = 0.7ms, ¢ = lem? uF!, 7,, = 170ms,
Ve =90mV, v =4, M =10, b = 0.7059, V,, = —65mV,
co = 107.8831mV, ¢; = —0.1319, co = —0.0465mV-!,
and c3 = —3.52 x 10~* mV2. Eliminating the depen-
dence on x produced a single-cell version of the equations.

Eq. (1) was discretized with a forward-Euler scheme,
using F,.(z,-) (F(z + Az, ) — 2F(x,") + F(z —
Az,-))/(Ax)?. Default step sizes were At = 0.008ms
and Az = 0.02cm. Cells and fibers simulated in Matlab
with the Karma model were paced by applying a periodic
train of rectangular pulses to cell 1 with a stimulus value
of —1120 A cm™, and a stimulus duration of 1ms.

For an N-cell fiber, the state vector is

~
~

2(k) = [Vi(k) ... V(k) ni(k) ... nn(k))T,
with discrete time index k& € {0,1,2,...}. Suppose that
zo(k) is a known solution to the discretized Eq. (1) for a
reference input i, (k), 2°' is a vector of real-world counter-
parts to the model-based elements of z, and that Z = z,—z,
with 23 = z, — 2t It was assumed that the vector of
measured variables available for the observer design could
be written as y*' = Cz*!, where C € RNe*2N and
N, € {1,2,...,2N}. The observer error was defined as
e = z*' — %, and the observer feedback gain was chosen
as a matrix L € R?V*No The Karma model was con-
verted to a closed-loop observer by adding the Luenberger-
type feedback term A¢LCe(k) to the discretized version of
Eq. ().

For the idealized case where the measured and mod-
eled stimulus currents are identical and z**'(k) satis-
fies the Karma model equations, the observer error dy-
namics linearized about z, have the form e(k + 1)
(A(k) — LC)e(k), where A(k) is the time-varying Ja-
cobian for the open-loop system. The system inte-
grated over one basic cycle length (BCL) is ej;; =

( Z’;,CTFBCL/M(A(M — LC’)) e; = Aine;. Here, k; is

the time index at the start of the 5" BCL.

For the single-cell model, observability Grammians
were computed to determine which of the variables, V' or
n, is a better choice for reconstructing the state from an
available measurement. The standard observability Gram-
mian definition for linear-time-varying systems was ap-
plied to a non-dimensionalized version of A(k) derived
previously [6], assuming L. = 0. Two cases were con-
sidered: in the first, only measurements of the membrane
potential were used (i.e., C = [1 0]), and in the second,
only measurements of the refractory variable were used
=10 1)

Keeping the eigenvalues of A(k) — LC inside the unit
circle is not a sufficient condition for system stability.
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Hence, to quantify the effect of different feedback con-
figurations for L # 0, a methodology was established
for computing the eigenvalues A1, ..., Aoy of Ajy, which
is time-invariant when evaluated on a periodic z, trajec-
tory. First, a fixed point of the time-integrated Karma
model was estimated using a Newton-Krylov solver [7].
Ajpe was computed using a finite-difference approach [7]
modified to apply perturbations scaled relative to the mag-
nitude of each state-vector element. A central-difference
method was then applied to reduce the impact of errors in
the fixed-point estimate on the Jacobian [8]. Eigenvalues
were determined with the eig function in Matlab.

To test the applicability of the observer concept, data
were obtained from a December 17, 2002 in vitro experi-
ment on a 2.1cm beagle Purkinje fiber. The fiber was paced
periodically from one end with a biphasic electrode, and
membrane potential recordings were made with six mi-
croelectrodes spaced approximately evenly along the fiber,
with a 0.001s sampling interval. Raw data were processed
by subtracting out the vertical offsets of each of the six
signals, and converting to voltage units by assuming a rest-
ing potential of —90mV and a base-to-peak amplitude of
125mV. The data were zero-order-hold interpolated when
used in computer simulations.

This experimental setup was mimicked through simu-
lations of the Karma model with a 106-cell fiber, with
initial condition V' = —85mV and n = 0 for all cells.
The microelectrodes were assumed to be located at cells
16, 31, 46, 61, 76, and 91 (z = 0.32, 0.62, 0.92, 1.22,
1.52, and 1.82cm). Tests were conducted to determine
whether membrane-potential measurements could be ap-
proximated using feedback from only some of the sen-
sor signals. To quantify the performance of the ob-
server, an APD error measure was calculated as APDE =
%Zme{‘dl,ﬁl,gl} %Zj:l |APD; — APDy, |, where
m is the cell index, j is the AP index, J is number of APs
in the range of 3000 to 4100ms, and the quantities inside
the absolute value are the measured and observer-derived
APDs, respectively. APDs were judged by the crossings
of the rising and falling edges with the line V' = —78mV,
which was chosen to approximate APDy for this data set.

3. Results

A(k) was first evaluated on a trajectory produced by
simulating the single-cell (open-loop) model with a BCL
of 230ms. Fig. 1 shows that the resulting minimum singu-
lar values of the observability Grammian are greater for the
case of measuring V' than for measuring n. This compari-
son holds for both shorter (Fig. 1(a)) and longer (Fig. 1(b))
Grammian time ranges.

In Fig. 2(a), it can be seen that for a search of L;; in the
range of -1.7 to 0, increasing by increments of 0.1, with
Lo; = 0, a minimum in the two-norm of the eigenvalue
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Figure 1. Minimum singular values of observability
Grammians for the single-cell model, with a Grammian
time window of: (a) 1/10 BCL (23ms) (b) one BCL
(230ms). Crosses indicate an output vector of C' = [1 0]
and squares indicate C' = [0 1]. There are only two
squares per subplot, since for C' = [0 1] the majority
of the minimum singular values are very close or equal to
zero. Scaled versions of the corresponding V' (dashed) and
n (dotted) trajectories are shown for reference.

s (a)
5 1

IS

5 0.5¢

C| 0 M S L S - |

« _10—1.5 -1 L -0.5 0

> x 10 11 (b)
(0] 5,

ks

E

o

‘I: 0 | + » t s " x T

« 0 0.002 0.004 0.006 0.008 0.01

21

Figure 2. Two-norms of eigenvalue vectors (e.v.), showing
the impact of different valuations of the gain vector L =
[L11 La1]T on a single-cell model with a BCL of 230ms:
(a) norms for selected values of L1y, with Ly; = 0, (b)
norms for selected values of Loy, with L1; = 0.

vector [A\; Ao]T was attained for L1; = —0.8. Setting the
other gain element to zero and testing Lo; from 0.001 to
0.01, increasing by increments of 0.001, revealed two lo-
cal minima in the eigenvalue norm, with the smallest norm
achieved at Lo; = 0.008, as shown in Fig. 2(b). Values in
the range Li; > 0 or Loy < 0 sometimes produced con-
vergent fixed-point estimates, but did not stabilize the ob-
server about a 1:1 trajectory of the Karma model. Increas-
ing Lo; through 0, 0.0002, 0.0004 for L; = —0.8 caused
the two-norm to decrease from 0.0055 to 1.4456x1075.
For the 106-cell fiber, tested configurations included
gains of the form L., ,, = &, with all other entries
zero (signifying V,,,-to-V,,, feedback), and Ly 4, m = &2,
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all other entries zero (V,,-to-n,, feedback), with m €
{16,46,76}. The values of the constants &; » were ad-
justed by trial and error. Feeding back n was not tested,
since n is not measurable. Figs. 3(a) and (b) show that the
feedback signal was on the order of the pacing pulse, and
eventually settled into a nearly periodic pattern. Compar-
ing Figs. 3(c),(e) to (d),(f), it can be seen that the closed-
loop case provided more accurate estimates of membrane
potentials than the model by itself. The closed-loop ob-
server also reduced APDE from 69.5ms to 12.9ms. How-
ever, it greatly overestimated the plateau potential, which
could most likely be improved through better calibration of
the model. Setting & = 0, results of V,,-to-n,,, feedback
were inferior to those of Fig. 3 for £, = 0.0005, while val-
ues &2 > 0.0008 appeared to destabilize the observer.

4. Discussion and conclusions

The observability results demonstrate that, for the
single-cell Karma model, it is more useful to measure V'
than n in order to reconstruct the state of the system. This
is fortunate, considering that membrane-potential mea-
surements are generally the only type that can be easily ob-
tained from real tissue, whereas n is not a practically mea-
surable quantity. The single-cell results in Fig. 2 showed
that V'-based observer feedback applied to either the V- or
n-dynamics could at least stabilize the system about a 1:1
trajectory. This gave confidence that the observer could be
used to track real membrane-potential measurements.

The fiber results in Fig. 3 established that Luenberger
observer feedback can be used to force the Karma model
to follow a trajectory, namely a selected set of microelec-
trode action-potential measurements, that is not native to
the model. Due to the absence of V,,,-to-n,,, feedback, the
scheme is similar to that of Rappel, ef al. [5], where V'
from the previous period has been replaced in the present
study by the measured membrane potential. Here, feed-
back was applied for a different purpose, to reconstruct
data rather than to eliminate alternans [5].

One distinction from other works involving Luenberger
observers for APD or AP models [1, 2] is that here, the
observer was applied to real data. Another difference is
that previous studies [1,2] used linear-time-invariant (LTT)
methods (e.g., pole placement) that generated one observer
feedback pulse per BCL. This study takes advantage of the
fact that, unlike a feedback-controlled stimulator that must
interact with real tissue, an observer has fewer restrictions
on how and when feedback signals are applied. A disad-
vantage is that the design problem of choosing L to affect
the eigenvalues of Aj, is generally more challenging than
the typical LTI case.

This study was intended as a starting point for further in-
vestigations into observer design. The design and analysis
tools could be extended to the multicellular case to obtain
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Comparison of open-loop model ((a),(c),(e)) and closed-loop observer ((b),(d),(f)) with & = —25, & =0,

and BCL = 230ms. In the closed-loop case, V,,,-to-V,,, feedback (initiated at 450ms) was applied at 3 of 6 measurement
locations, at cells 16, 46, and 76 (x = 0.32, 0.92, and 1.52cm). (a),(b): observer feedback signal vs. time at cell 46, along
with pacing pulse applied to cell 1 of the simulated system. (c),(d): simulated and measured membrane potentials vs. time
atcell 61 (z = 1.22cm), which was a non-feedback location. (e),(f): simulated membrane potentials vs. time and distance
along the fiber. In (b) and (d), the remaining feedback or AP time-series curves were similar but were omitted for brevity.

insights into best sensor placement. If the observability re-
sults in Fig. 1 turn out to hold for ion-channel models, then
measurements of V' can be used to reconstruct ionic flows
through the cell membrane. To be practically useful, ob-
servers must be designed to work with more complicated
measured AP patterns, such as alternans.

Overall, the results show that a closed-loop observer is
a viable approach for estimating variables (in this case V'
and n) at locations away from the measurement electrodes.
Beyond data reconstruction, the observer could be used
to enhance the performance of an alternans-suppressing
feedback controller by providing estimates of unmeasur-
able variables. The observer also provides a complemen-
tary method to model-parameter estimation, since accurate
calibration of parameters cannot generally address all dis-
crepancies between modeled and measured behavior.
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