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Abstract

Electrograms (EGM) stored in Implantable Car-

dioverter Defibrillator (ICD) during ventricular tachycar-

dia episodes have recently been shown to convey valuable

information for the identification of the anatomical origin

of the arrhythmia and subsequent ablation therapy. We

developed an automatic procedure for estimating the focal

origin of the arrhythmia by analyzing the EGM waveforms.

A clinical protocol was designed for validation, consisting

of electrical pacing from different spatial locations in the

left ventricle, in which the spatial coordinates of the pacing

electrode were known by the use of a sequential navigation

system. EGM from can-coil lead configuration were stored

in the ICD for 25 patients (18 ± 10.1 EGM per patient).

Several machine learning classifiers (k nearest neighbors,

radial basis function, and multilayer perceptron), were im-

plemented, whose input space was given by the 201 sam-

ples (340 ms) of the template for each pacing location, and

by a set of simple parameters selected according to clini-

cal criteria. The target output was set by considering the

heart division in three main planes, hence giving jointly 8

possible classification regions (octants). To estimate the

generalization performance, classification was evaluated

following a leave-one-patient-out strategy. Location ac-

curacy reached 73%, 58.4%, 57.5% (for binary classifi-

cation in terms of main planes), and for octant identifica-

tion with multioutput classification reached 36.3% (note

that the random 8-output classifier average accuracy rate

is 12.5%). We can conclude that the estimation of the ar-

rhythmia location can be addressed by analyzing the EGM

waveform and features using learning from samples tech-

niques.

1. Introduction

Implantable Cardioverter Defibrillator (ICD) is a usual
prevention for patients with previous Ventricular Tachycar-

dia (VT), being an effective therapy in preventing sudden
cardiac death episodes [1]. This device detects automat-
ically a dangerously fast heart rhythm and, when neces-
sary, it delivers appropriate therapy (pacing, low-energy
cardioversion or high-energy shocks) in order to restore the
sinus rhythm. A number of ventricular arrhythmias are due
to ectopic focuses or accessory pathways, and they can be
suppressed by means of cardiac ablation in electrophysio-
logical studies, in which radiofrequency energy or intense
cold is used to sear the abnormal tissue with a catheter in-
serted into the heart chamber [2].

The correct location of arrhythmogenic sources is cru-
cial to ensure the success of ablation therapy. Among other
devices, the Sequential Navigation Systems (SNS) are of-
ten used by electrophysiologists to guide the catheter abla-
tion procedure [3]. Current SNSs yield the catheter spatial
location at each moment, and sequentially build a three-
dimensional reconstruction of the heart chamber geome-
try. This represents useful complementary information to
the catheter-sensed intracardiac electrograms (EGM), and
they are jointly considered to build feature maps, such as
activation or voltage. Some studies have shown that the
morphology of arrhythmic electrical recordings provides
relevant information about the arrhythmia origin [4], and
hence, it would be helpful for the electrophysiologist a
system capable of automatically providing the heart region
for ablation target, based on previously observed EGM ar-
rhythmic recordings.

In this setting, the main problem is the availability of
recordings for the validation of the spatial origin in sponta-
neous arrhythmias. In this work, we use: (1) the monomor-
phic arrhythmia intracardiac recordings from pacing dur-
ing electrophysiological study as representative of the ICD
stored EGM waveforms during VT; and (2) the simulta-
neously recorded coordinates of the pacing electrode in a
SNS, which gives the spatial location information. This
data configuration allows us to design an statistical clas-
sifier, based on the arrhythmia morphology and on simple
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Figure 2. Waveform of a representative template and fidu-
cial points used to extract the amplitude and time parame-
ters in a can-coil ICD stored EGM.

• vFP : voltage ratio between the final deflection and peak
deflection. Final deflection is the smallest voltage between
the peak deflection and the end of the template.

The classifier design was tackled by considering inde-
pendently both datasets (C1 and C2).

3.2. Statistical classifiers

We considered three classification schemes: voting k-
Nearest Neighbors (k-NN), which represents an instance-
based classifier approaching the Bayes error rate with in-
creasing amount of data [7]; and two neural networks
(NN), which represent universal function aproximators,
namely, the Radial Basis Function Network (RBFN), and
the Multi-Layer Perceptron (MLP) [6].

The voting k-NN classifier relies on an estimation of the
a posteriori probability, assigning a datum to the most rep-
resentative class among that of the k nearest data in the
training dataset. As the distance metric, the standard Eu-
clidean distance was used.

We considered for both NNs the simplest architecture
with three layers (input, hidden, and output). Regarding
the hidden neurons, we used spherical Gaussian radial ba-
sis functions for the RBFN, and standard sigmoidal neu-
rons for the MLP. In the multiclass classifier, the output
layer consisted of three neurons (one for each half, hence
providing eight different regions); for the binary classifier,
the output layer had just one neuron.

For training the RBFN, we considered a fast sequential
learning approach. First, the centers and widths of the hid-
den neurons were set with the Expectation-Maximization
algorithm. Then, the weights connecting the hidden
and the output neurons were determined by applying the
Moore-Penrose pseudo-inverse. The MLP network was

trained using the conjugate gradient algorithm to minimize
the sum-of-squared errors and thus find, simultaneously,
the hidden and output weights.

When working with statistical classifiers, it is conve-
nient to preprocess the data for all the input attributes be-
ing in a similar range (normalization), hence avoiding an
input attribute dominating and hiding others due to a scal-
ing effect [6]. Among all the available normalization pro-
cedures, we used the zero mean and unit standard devi-
ation normalization (m=0,σ=1) and the bounded interval
normalization to [-1,1].

To get an accurate estimation of the generalization per-
formance, we used the following procedure, called leave

one patient out for its similarity with the leave-one-out
scheme [7]: (1) set apart all the templates of one patient;
(2) train the classifier with the templates of the remainder
patients; and (3) evaluate the performance of the trained
classifier with the templates of the patient not used for
training. This procedure was repeated 25 times (one for
every patient in the database), and the generalization per-
formance was computed as the average performance of the
460 templates not used during training.

To design the classifiers, we explored a range of values
for each design parameter:
• For parameter k in the k-NN approach, values between
k = 1 and k = 50 (step of 1) were considered.
• For the number of hidden neurons in the NN approaches,
the range from 1 to 10 was evaluated.
For each classifier, the most appropriate value was chosen
according to a 5-fold cross validation methodology [7].

4. Results

Results in Table 1 show the accuracy of the three clas-
sifiers averaged over 10 runs using the leave one patient

out method. Both binary and multiclass classifiers have
been benchmarked. Results in multiclass column of oc-
tants group were obtained for a single multiclass classi-
fier structure, whereas binary column shows the results for
three binary classifiers combined for a multiclass strategy.
Design parameters (k for kNN and number of hidden units
for NNs) from 5-fold cross validation are also presented,
in braces (mean, standard deviation) below the accuracy
figures. Training process was made both for normalized
and not normalized input attributes. The table shows the
best obtained results, corresponding to not normalizing.
We found that (m=0,σ=1)-normalization did not improve
and [-1,1]-normalization degraded significantly the perfor-
mance.

Similar performance was in general obtained for
octants-based classifiers when the same classifier is con-
sidered, with an slightly lower classification rate for the
C1 dataset (named waveform in the table), probably due to
the high number of input attributes. Recall that the random
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Table 1. Averaged (and standard deviation) percentage of accuracy, for the classifiers in sets C1 and C2.
Octants Halves

Classifier Atributes
Binary

combination Multiclass Halves-1 Halves-2 Halves-3

Waveform 33.7(0.2) 19.4(0.1) 70.5(0.1) 58.4(0.1) 55.0(0.1)
{1.3(0.1)} {13.2(0.1)} {1.4(0.0)} {3.4(0.0)}

k-NN tso,vIP ,vFP 22.8(0.2) 22.5(0.2) 72.8(0.0) 58.2(0.1) 55.9(0.2)
{36.9(0.4)} {37.8(0.3)} {33.6(0.3)} {36.9(0.3)}

vIP ,vFP 24.7(0.2) 22.6(0.3) 72.8(0.0) 58.5(0.0) 57.1(0.2)
{31.6(1.0)} {23.5(0.1)} {10.7(0.3)} {37.1(0.3)}

RBF tso,vIP ,vFP 30.9(4.0) 35.5(1.6) 71.9(0.6) 58.1(1.8) 57.2(1.1)
{3.8(0.9)} {3.4(0.7)} {3.1(0.7)} {2.9(0.5)}

vIP ,vFP 35.3(1.4) 33.0(1.2) 71.7(0.8) 54.1(1.3) 52.8(1.2)
{2.3(0.8)} {1.0(0.0)} {1.0(0.0)} {1.0(0.0)}

Waveform 31.0(1.2) 33.8(1.9) 69.5(1.3) 56.3(1.4) 49.7(1.5)
{1.1(0.4)} {1.2(0.5)} {1.1(0.4)} {1.1(0.3)}

MLP tso,vIP ,vFP 35.9(1.6) 34.8(1.3) 73.1(0.3) 57.4(2.4) 57.1(1.1)
{3.2(1.0)} {1.2(0.5)} {2.4(1.4)} {1.4(1.0)}

vIP ,vFP 36.3(1.2) 36.2(1.1) 73.1(1.0) 56.0(1.6) 57.5(1.8)
{2.5(0.8)} {1.4(0.7)} {1.9(1.1)} {1.7(1.2)}

8-output classifier average accuracy rate is 12.5%. Reduc-
tion in the difficulty of the classifier design, going from
classification into 8 regions (octants column) to that into 2
halves (binary combination column), usually led to an im-
provement in the classification rate, especially remarkable
for the k-NN classifier. NNs classifiers with parameter-
based input spaces reached in general higher performance
than waveform-based k-NN. Waveform-based MLP clas-
sifier had a performance slightly lower than k-NN (except
for multiclass classifier), and waveform-based RBF was
not calculated due to numeric issues in the Moore-Penrose
calculation.

Halves, binary classifiers yielded similar results for dif-
ferent input spaces, and for different classifiers. Actually,
binary strategy gave slightly better classification than a
random classifier for Halves-2 and Halves-3, whereas per-
formance was markedly higher for Halves-1.

With respect to the machine complexity in the
parameter-based input space NNs classifiers, it was com-
parable to the input space dimensionality, hence the classi-
fication can be done with controlled complexity systems.
Slightly higher complexity was necessary for octants-
based classifiers. Only limited complexity (up to 10 neu-
rons) was explored in the waveform-based MLP schemes,
due to computational issues and for avoiding the curse of
the dimensionality.

5. Conclusions

The automatic location of the anatomical origin of ven-
tricular tachycardias can be estimated by analyzing ICD
stored EGM morphology and simple features. Statistical
learning algorithms with limited complexity can be used
for this purpose. The validation protocol included merging
data from SNS and EGM in ICD during pacing at electro-
physiological studies, giving an adequate gold standard for

this application.
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