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Abstract

A reliable diagnosis by automated external defibrilla-

tors (AED) during cardiopulmonary resuscitation (CPR)

would reduce hands-off time, thus increasing the resusci-

tation success. Several filtering techniques have been pro-

posed to remove the artifact induced on the ECG by chest

compressions. The improvement in the signal-to-noise ra-

tio (SNR) has been widely used to test the performance of

the filter, using artificial mixtures of ECG signals and CPR

artifacts.

In this work, we analyzed the influence of the SNR,

estimated from corrupted out-of-hospital cardiac arrest

episodes, on the AED diagnostic accuracy before and af-

ter artifact removal. Filtering improved the sensitivity for

records with low SNR, however the specificity was largely

independent of the SNR. Moreover, the total specificity de-

creased after filtering due to misclassified asystole records.

1. Introduction

Cardiopulmonary resuscitation (CPR) and early defib-

rillation are essential in the treatment of out-of-hospital

cardiac arrest (OHCA). Chest compressions during CPR

may induce an artifact on the ECG compromising the reli-

ability of the shock advice algorithm (SAA) of automated

external defibrillators (AED). Consequently, the interrup-

tion of CPR is mandatory during the rhythm analysis in-

terval. Unfortunately, these ”hands-off” intervals consid-

erably reduce the probability of a successful resuscitation

outcome. The removal of the CPR artifact would allow a

reliable rhythm analysis during CPR, therefore minimizing

the ”hands-off” intervals and increasing the resuscitation

success.

In the last decade, several CPR artifact suppression

methods have been designed based on adaptive filtering

approaches. Traditionally, these filters have been tested

with artificially corrupted signals, obtained as the sum of

a clean ECG and a CPR artifact with a known signal-to-

noise ratio (SNR). The goodness of the filtering method

was then tested by varying the SNR, i.e., under different

levels of corruption, and analyzing the improvement in the

SNR after filtering the corrupted ECG [1].

However, in a clinical scenario, it is necessary to assess

how much the suppression of the artifact improves the di-

agnosis of the SAA. For this aim, the accuracy of the SAA

to detect shockable (sensitivity) and non-shockable (speci-

ficity) rhythms are evaluated before and after the removal

of the artefact [1, 2].

In this work, we estimated the SNR of corrupted OHCA

records. Then we analyzed the diagnostic accuracy of a

SAA before and after the suppression of the artifact in

terms of the estimated SNR. Shockable and non-shockable

records were separately studied because the influence of

the SNR on each rhythm group is different.

2. Methods

2.1. ECG database

Our data is a subset of a large database of OHCA

episodes [3], annotated by expert reviewers in five rhythms

types: ventricular fibrilation (VF) and fast1 ventricular

tachycardia (VT) in the shockable category and asys-

tole (ASY), pulseless electrical activity (PEA) and pulse-

generating rhythm (PR) in the non-shockable category.

We extracted 381 records from 299 patients arranged in

three groups: shockable (89 samples, 84 VF and 5 VT),

non-shockable asystole (88 samples) and non-asystolic

(nASY) non-shockable (204 samples, 166 PEA and 38

PR). The records are 31 s long with a common annotated

underlying rhythm. CPR was administered in the initial

15.5 s interval, corrupting the ECG. CPR was stopped in

the last 15.5 s and the ECG is free of artifact. For each

record, we also extracted the compression depth signal to

track the activity due to the chest compressions.

The ECG and the compression depth signals were down-

sampled from 500 to 250 Hz and preprocessed with an

order-four Butterworth bandpass filter (0.7–30 Hz). The

resolution was 1.031 µV per least significant bit.

1rate above 150 bpm
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2.2. Estimating the SNR

Assuming that the underlying ECG and the CPR artifact

are uncorrelated, the corrupted ECG registered through the

defibrillation pads can be expressed as:

cecg = secg + scpr, (1)

and, in terms of signal power:

Pc = Pecg + Pcpr. (2)

Consequently, the SNR (measured in dB) is defined as:

SNR = 10 log
10

(

Pecg

Pcpr

)

= 10 log
10

(

Pecg

Pc − Pecg

)

. (3)

Therefore, high SNR values mean low CPR artifact power

and viceversa.

The underlying ECG in the corrupted interval is un-

known, but it appears in the interval without artifact. As-

suming that the power of the underlying ECG is the same

in both intervals we can obtain an estimation of the SNR

of the record using eq. (3).

In some cases, the artifact was negligible and its esti-

mated power (Pcpr, calculated from eq. (2)) was negative.

These absurd values correspond to very high SNR values,

we adopted a SNR value of 25 dB for these cases.

For the ASY records the power of the underlying ECG is

negligible and the first 15.5 s interval is a pure CPR artifact,

consequently the SNR tends to -∞ dB. We did not estimate

the SNR for this group.

2.3. Filtering the corrupted ECG

The CPR suppression method used in this work is based

on a Kalman filter that uses the instantaneous frequency

of the chest compressions as the reference signal, see [4]

for a full description. The instantaneous frequency is es-

timated by locating the instants when the chest is fully

compressed in the compression depth signal, as described

in [5]. We applied the Kalman filter (using its optimum

operating point [4]) to the OHCA records. The filter esti-

mated the artifact, ŝcpr, to obtain the estimated underlying

ECG as:

ŝecg = cecg − ŝcpr. (4)

2.4. Measuring the SAA performance

We used an off-line version of the SAA running in a

commercial AED, the Reanibex 200 (Osatu S. Coop., Er-

mua, Spain). The algorithm processes three consecutive

non-overlapping 4.8 s signal intervals and advises a shock

if at least two are classified as shockable. The 15.5 s in-

tervals defined for the ECG records were sufficient for a

shock/no-shock decision.

We calculated the sensitivity and the specificity of the

SAA in the clean interval, and before and after filtering in

the corrupted interval. By comparing the SAA decision

in the two intervals (same underlying rhythm), we could

evaluate how the CPR artifact affected the performance of

the SAA.

3. Results

The distribution of the estimated SNR is shown in

Fig. 1(a) for the shockable records and in Fig. 1(b) for the

nASY records. 12.4 % of the shockable records (11/89)

and 13.7 % of the nASY records (28/204) presented a neg-

ligible artifact power (SNR=25 dB). For the rest, the mean

SNR value was −1.7 ± 6.8 dB for the shockable records

and −0.6± 7.8 dB for the nASY group.

Table 1 is a summary of the results for the SAA. The

sensitivity increased from 58.4 % to 94.4 % after filter-

ing. The 52 records correctly classified before and af-

ter filtering (group I in Fig. 1(a)) presented a mean SNR

of 1.3 ± 5.6 dB. The 32 records recovered (group R in

Fig. 1(a)), i.e. an initial wrong diagnosis turned correct

after filtering, had a mean SNR of −4.3± 6.0 dB. Finally,

only 5 records were misclassified before and after filter-

ing, the corruption level was high (SNR < −12.5 dB) in 3

records, and low (SNR > −1.3 dB ) in 2 records. The sen-

sitivity was 97.8 % (87/89) for the artifact-free intervals.

The specificity for the nASY group was the same be-

fore and after filtering, 92.6 %. The 178 records correctly

classified before and after filtering (group I in Fig. 1(b))

presented a mean SNR of 0.0± 7.6 dB. The 11 records re-

covered after removing the artifact (group I in Fig. 1(b)),

had a mean SNR of −3.2± 5.6 dB. Fig. 1(b) shows, how-

ever, how another 11 records correctly classified as non-

shockable before filtering were misclassified after filtering

(group M), with a mean SNR of −8.0 ± 8.0 dB. Finally,

the specificity was 98.5 % (201/204) for the artifact-free

intervals.

The specificity for the ASY group decreased from

86.4 % to 81.0 % after filtering. Fifteen corrupted records

correctly diagnosed before filtering were misclassified af-

ter filtering, whereas only 11 records were recovered after

Table 1. Performance of the SAA before and after the

suppression of the CPR artifact.

After

Shockable nASY ASY

NS S NS S NS S

B
ef

o
re NS 5 32 178 11 61 15

S 0 52 11 4 11 1
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(b) SNR distribution for the nASY records.

Figure 1. Distribution of the estimated SNR for the cor-

rupted intervals of the shockable and the nASY groups. In

the legends, W refers to the whole set; I to the records cor-

rectly classified before and after filtering; R to the records

whose diagnosis turned correct after filtering; M to the

records whose diagnosis turned wrong after filtering.

filtering. The specificity was 100 % for the artifact-free in-

tervals.

4. Discussion and conclusions

4.1. Regarding shockable OHCA records

Our study shows that, when the artifact power was low

(high SNR), the corrupted records were prone to be cor-

rectly classified before and after filtering (see Fig. 1(a)).

However, some strongly corrupted records were correctly

classified before filtering, because the artifact appears like

a fast ventricular tachycardia (Fig. 2(a)) or a disorganized

and fast VF-like artifact.

Filtering improved the SNR, causing an increase in sen-

sitivity. The SAA diagnosis turned correct after filtering

for 32 shockable records, which in general showed a high

corruption level.

The 5 shockable records misclassified before and af-

ter filtering showed very different levels of corruption.
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(a) Example from the I group, SNR = −8.9 dB.
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(b) Example of non recovered record, SNR = −12.9 dB.

Figure 2. Examples from the shockable subset, showing

the corrupted and filtered ECG and the SAA decision.

Fig. 2(b) presents a record with a very high corruption

level (SNR = −12.9 dB). After filtering, spiky residuals

appeared due to the waveform of the artifact, these spikes

were misinterpreted as QRS complexes by the SAA. Fine

VF was the underlying rhythm for the 2 records with high

SNR, after filtering the estimated ECG resembled an asys-

tole.

4.2. Regarding non-shockable records

In the nASY group, 87.3 % of the records were correctly

classified before and after filtering. In the corrupted in-

tervals, the artifact appeared as an organized rhythm with

rates below the threshold for shockable VT, causing a no-

shock decision.

Only 11 records were recovered after filtering. In gen-

eral, they presented high SNR, but again we observed a

VF-like artifact that caused a wrong diagnosis before fil-

tering. As shown in Fig. 3(a), a regular underlying rhythm

appeared after the suppression of the artifact.

In contrast, 11 records presenting low SNR were missed

due to VF-like filtering residuals, Fig. 3(b) shows an exam-

ple. The SNR improvement after filtering did not caused a

correct SAA diagnosis.

A high percentage (86.4 %) of the records in the ASY

group were correctly diagnosed before filtering. In those

cases, the artifact was interpreted as a non-shockable orga-
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(a) Example for the R group, SNR = −4.7 dB.
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(b) Example for the M group, SNR = −14.9 dB.

Figure 3. Examples from the nASY subset, showing the

corrupted and filtered ECG and the SAA decision.

nized rhythm.

After filtering 11 ASY records were recovered and 15

were missed. The recovered records presented an orga-

nized low amplitude artifact with rate above the threshold

for shockable VT. As shown in Fig. 4(a), the filter effi-

ciently removed the artifact and the underlying rhythm was

correctly identified as asystole. For the missed records, al-

though the filter substantially removes the artifact, the fil-

tering residuals resemble fine VF producing a wrong diag-

nosis as shown in the example in Fig. 4(b).

4.3. Conclusions

In the last decade, many efforts have focused on the de-

sign of sophisticated filters to efficiently suppress the CPR

artifact. Our experiment shows that although filtering im-

proves the SNR in all cases, the sensitivity increases but

the specificity decreases after filtering. The accurate di-

agnosis of non-shockable rhythms during CPR is still not

possible, and a preliminary analysis based on the SNR is

not conclusive when the goodness of the filter is evaluated

in terms of the diagnostic accuracy of an AED.
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(a) Example of successful filtering for an ASY record.

NO SHOCK NO SHOCK

c
ec

g
(m

V
)

-1.2

-0.6

0

0.6

1.2

SHOCK NO SHOCK

ŝ
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(b) Example of an ASY record missed after filtering.

Figure 4. Examples from the ASY subset, showing the

corrupted and filtered ECG and the SAA decision.
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