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Abstract

Determining the stiffness (or compliance) of
biological vascular vessels is of importance when
investigating pathological conditions, the design of stents,
vascular grafts, distal anastomotic connectors in
coronary artery bypass surgery, and understanding of
biological pressure sensors. This communication is
concerned with determining appropriate values of the
material constants associated with a layered anisotropic
hyperelastic constitutive model to estimate the mean
stress for arterial and venous walls. Results show that the
values of the material constants, determined from a
constrained optimization approach, satisfying
equilibrium, give rise to mean stress-strain states which
are consistent with responses obtained from the standard
averaged model.

1. Introduction

Understanding  the  stress-strain  relationship  for
cardiovascular vessels could have a major impact on
studying diseases such as arteriosclerosis and
atherosclerosis. It could also help in designing vascular
grafts. The authors are particularly interested in applying
such information to investigate baroreceptors. These are
pressure sensors that report blood pressure to the CNS.
The process of their operation is divided into two main
phases[1]. Firstly, blood pressure applied to the vascular
wall is transferred into a strain which then controls the
opening probability of many mechanosensitive ion
channels. These are embedded into the vascular wall [1].
Their exact positions are disputed. Studying stiffness
contributions from different layers of the arterial and
venous walls, as well as the mean stress for the wall,
would help in understanding the function and the process
or the arterial wall, there have been various attempts to
model the stress-strain  profile using different
assumptions. For example, one may use thin-walled
cylinder theory to determine the average axial and
circumferential stresses given the axial force and internal
pressure. In this model, it is assumed that the strain (axial
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stretch and circumferential stretch) across the wall is
constant. Using this simplified approach, the average
stress-strain behaviour can be determined. We refer to
this approach as the standard averaged model.
Alternatively, one could begin with the assumption of a
uniform strain field across the wall of the vessel, but now
employ a constitutive model (appropriate for the wall
material) to determine the stresses. The material constants
satisfy structural equilibrium (that is, the sum of the
stress-area products equals the applied forces). This is the
approach presented here.

2. Modelling approaches

The arterial and venous wall consists of three
concentric cylindrical layers; innermost layer; intima,
middle layer; media and outermost layer; adventitia. The
layers behave as transversely isotropic homogeneous
nearly incompressible hyperelastic materials in which a
strain-energy function, W, is assumed to exist [2]. The
arterial wall extends passively, but the smooth muscle
controls the active tension of the vessel. Forming a model
for thin wall arterial response, Holzapfel et al [3]
presented a two term strain-energy function that used
experimentally obtained elastin and collagen responses to
model passive extension. The effect of smooth muscle
cells was neglected as it is thought that these do not
contribute to the passive stiffness. Only elastin and
collagen were considered as the constituents that act
during the extension of the arterial wall. However, that
model did not consider the responses for the individual
layers constituting the arterial wall. von Maltzahn et al [4]
measured experimentally the elastic properties of the
media and adventitia. It did not include the role of the
intima, which has been proven to be of significant
importance [2]. In [5] Demiray and Vito used a two layer
model, neglecting the role of the intima. The media was
considered orthotropic, while the adventitia was
considered isotropic. The relationship between the two
layers and the whole structural stress was not presented.
In [2] Holzapfel et al presented layer specific strain-
energy equations assuming arterial layers. No mean
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relationship for the stress-strain response of the whole
wall was given. The question addressed in this paper is,
‘given the axial and circumferential stretches in arteries
and veins, how can we develop a model to predict the
overall stiffness?” A layered approach in conjunction with
a hyperelastic anisotropic material model and thin wall
theory was used. This model gives a basis for comparison
between different arteries of different species and of
different materials. It is assumed that the strain-energy
function of the venous wall is of a similar form to that of
the arterial wall [6]. The percentage thickness of each
layer with respect to the total wall thickness is assumed to
be the same for each vessel. Experimental findings by
others have revealed the percentage thicknesses to be
approximately 27%, 40 % and 33 % for the intima, media
and adventitia respectively [2].

3. Experimental data

There are few papers reporting on the deformation of
the arterial wall [2]. Literature containing experiments
which compare the response of the whole wall and the
single layer response are not available. Some of the data
which exists is not in a form useful for the stress—strain
analysis. For example, [7] investigates the static pressure-
diameter relationship but does not show the axial force
relationship with pressure. The arterial experimental data
used here were extracted from an investigation [8]. That
presented graphs representing the external diameter
relationship versus luminal pressure together with the
axial force relationship versus the luminal pressure for
different arteries. Data for a coronary artery and a
mammary artery have been chosen here. Different
arteries were dissected from arteriosclerotic cadavers.
Static pressure tests were then carried out after the
application of an axial pre-stretch to pre-conditioned
arteries.

The external diameter and corresponding axial force
were then measured. Experimental data for the vena cava
was sourced [6]. We digitised the data sets from those
papers using 17 points across the pressure range and
imported them into the models for this investigation.

4. Thin wall theory

Thin wall theory can be applied when the thickness/
radius ratio is less than a tenth. However, Holzapfel et al
in [3] wused thin wall theory to represent the
circumferential and axial responses. The rationale for this
was that as all collagen fibres are embedded in the
tangential surface of the tissue, it can be assumed that
there are no components in the radial direction [2]. In this
case only circumferential and axial stresses become
relevant. Thin wall theory offers a simple approximation
for the relationship between mean circumferential and

578

axial Cauchy stresses. Its named here the standard model.

S. Hyperelastic model

Here we describe the form of the hyperelastic
constitutive equations. These are based on the theory
presented by Holzapfel et al [2]. The equations are used
to calculate the specific stress responses for each layer as
functions of circumferential and axial stretch. Thin wall
theory was applied to calculate the mean wall stress both
circumferentially and axially. To find the relationship
between the second Piola-Kirchhoff stress tensor, S, and
Green-Lagrange strain tensor, E the concept of a strain-
energy function, W is used.
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The Cauchy stress tensor, o, can be calculated from the
second Piola-Kirchhoff stress tensor, S, using the inverse
Piola transformation. Using the Lagrangian multiplier, a
relationship is derived between the total strain-energy and
the volumetric, U(J) and isochoric components, W, (E,
Aj). Assuming the vascular walls to be incompressible,
and that the total strain-energy is a function of the Green-
Lagrange strain tensor representing one family of
collagen fibres, thus:
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where a; is the angle components of one collagen fibre

Ay = a, Ba,

U=PJ-1) 4)
where P has the units of hydrostatic pressure. Thus the
Green-Lagrange strain-stretch relationship is given by

)

1 2
E; 5(11' -1)

where 2; is the principal stretch. For each layer, the
strain-energy, W, is further divided to two parts
representing the response of elastin and collagen. The

elastin  strain-energy  component  Wiso(Ei), is
approximated to be
, e 6
Wiciso (Eic) = > (1 — 3) ©)

where I is the first invariant of stretch and ¢, is a
material constant related to the elastin stress response.
The collagen component can be described by

k.
1"""‘rir:sl.n'mn (Elc . Ai) = i (eq - 1) @)



150

100

L
=}

Circumferential Cauchy Stress [kPa]

T
1 1.1 1.2 13
Circumferential Stretch
Figurel: Hyperelastic  model  estimations  of

circumferential stress-stretch for (a) coronary artery, for
the intima (large open symbol), adventitia (middle open
symbol) and meda (small symbol). An example of a
Holzapfel et al coronary model response is indicated by
the filled symbols for comparison [6].

where k;, and k, are material constants related to the
collagen stress response. q is a function of the dispersion
factor, taken here to be equal one, and 1, is the fourth
stretch invariant. The dispersion factor value represents
the amount of dispersion from the ideal alignment of the
fibres [2]. A value of unity assumes that there are not any
fibres oriented in the ¢ direction. For a value of zero the
fibers are assumed to be isotropically oriented as
presented by Demiray et al [S]. Thus for the intima (n)

Qn = kop(lyn — 1:}2 (8)

L = ¥cos? (p,) + Azsin (o) ©)
Similar expressions can be obtained the media and
adventitia. This paper proposes using stress equilibrium
in the wall to calculate the mean wall Cauchy stress
components, 6 and 6, in the circumferential and axial
directions. h is the wall thickness after deformation.

(G{mhn + G—mehm + Géahn) (10)
_ (Oznhp + Gzmhy + Gz5h,) (11)
Otz =

h

Results and discussion
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Optimisation of the hyperelastic model data was
achieved using the Levenberg—Marquardt method with a
root mean square error function provided by Matlab®.
Parameter sensitivity analysis was investigated for the
material parameters of the coronary artery. Figurel
presents the inferred layer circumferential Cauchy stress-
stretch profiles for circumferential Cauchy stresses.

These stress-strain profiles confirm the layers have the
same order of stiffness as Holzapfel et al [2] von
Maltzahn et al [4] and Demiray et al [5] .

he model was constrained by relationships which can
be explained by experimental evidence; these constraints
are as follows:
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Figure 2: Parameter sensitivity of the coronary artery. A
thick continuous line is used for the angle; a thick dashed
line for ks, a thin dashed line for k; and ¢, is drawn using
a thin continuous line. The intimal layer is represented by
a circle, the adventitial layer by a square and medial layer
by a triangle.
Circumferentially and Kintima = Kadventitia > Kmedia
Axially:

For the intima:
For the media:
For the adventitia:
Fibre orientation:

kaxial> kcircumferenlial
kcircumferemial > kaxial
kaxial > kcircumfcrcntial
Pintima > (Padventitia> Pmedia

where k represents the stiffness. Material parameters
presented by Holzapfel et al [2], were used as a guide to
obtaining the material parameters used here (figure 2).
The collagen material parameters are the most sensitive.
In terms of layer response, the media possesses the lowest
parameters value. The intima, being the stiffest layer has
the parameters with highest sensitivity. The hyperelastic
model (figure 3) has been shown to estimate the stress-
strain profiles with root mean squared errors of 0.05.

This compares well with the Holzapfel et al [2]
prediction of 0.07. At low pressure, the model fit was not
so good. It is assumed that elastin is first stretched, while
collagen attracts load at higher stretches. Improving the
model of the elastin behaviour could increase the quality
of the overall fit [9]. Collagen contribution to the mean
stress is far greater than the elastin for all the three layers



[2]. This indicates that, in terms of load-carrying capacity,
vascular vessels are collagen dominated.

Figure 4 shows that the vein is softer than the all
arteries investigated both axially and circumferentially.
Both the standard and hyperelastic models indicate that
the maximum extension ratio for the vena cava is much
bigger than that of the arteries (Figure 4). Venous
parameters are lower than the arterial ones. These models
ould be used to design parameters of synthetic stretch
receptors and vascular grafts [6] and studying vascular

diseases.
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Figure 3: Comparison of the mean stress strain

relationships for the axial (small symbol) standard model
(dotted) and hyperelastic model (line).
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Figure 4: Comparison of mean stresses for abdominal
aorta (star) [8], mammary (diamond), coronary (circle),
and rat tail artery (triangle) [6] vena cava (square), in both
axial (dashed line) and circumferential (continuous line)
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directions. Axial stretches are 1.66, 1.2, 1.1, 1.29, and
1.91 respectively.
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