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Abstract

We investigate generating mechanisms of atrial fibrilla-

tion (AF) based on numerical solutions of the FitzHugh-

Nagumo equations. In particular, the interaction of reen-

trant wavefronts with obstacles, modeled as tissue with

gradually reduced excitability, is presented. We show that

with increasing modification strength, the spatio-temporal

characteristics of the wave changes from functional to

anatomical reentry. With decreasing distance of the obsta-

cle to a non-conducting boundary, a transition is observed

from a stable spiral to a transient reentrant wave with two

to three reentries up to a suppression of reentries. We fur-

ther study the possibility to generate irregular, fibrillatory

patterns by the perturbation of regularly paced waves by a

second pacemaker. The irregularity depends on the pertur-

bation frequency and the geometry of the simulation area

and is quantified in terms of a Shannon entropy.

1. Introduction

Atrial fibrillation (AF) is the most frequent appear-

ing heart arrhythmia in the industrial countries. Special

self-excitatory patterns of the electric potential like spi-

ral waves, thought to be underlying generating mecha-

nisms of AF, are often located near physiologically mod-

ified regions of the heart tissue in the left atrium [1–4].

The question arises, how these physiologically modified

regions, called “obstacles” in the following, can be respon-

sible for the generation of spiral waves and how the prop-

erties of these patterns depend on parameters characteriz-

ing the obstacles. To tackle these questions, we study the

consequences of a spatial variation of parameters charac-

terizing cell properties like excitability on the basis of the

FitzHugh-Nagumo model [5], which is a simple model for

action potential generation and propagation. We specify

the type and properties of spatio-temporal excitation pat-

tern in dependence of the extent of the modified region and

the strength of the modification.

Thereupon we investigate how self-excitatory sources as

spiral waves or ectopic foci with rather regular dynamics in

one region can induce irregular, fibrillatory excitation pat-

terns in some other region. Irregular, fibrillatory states are

often observed in the right atrium [2–4] and it was conjec-

tured that these are caused by the perturbation of regular

waves generated by the sinus node by waves emanating

from an additional pacemaker like a spiral wave or ectopic

foci in the left atrium.

2. Methods

Our study is based on the FitzHugh-Nagumo (FHN)

equations [5], which describe excitable media via an

inhibitor-activator mechanism and provide a simple model

to investigate spatio-temporal evolution of electric excita-

tions in the heart. When combined with a spatial diffusion

term, the FHN equations are

∂u

∂t
= D

(

∂2u

∂x2
+

∂2u

∂y2

)

+ c(v + u −
u3

3
+ z)

∂v

∂t
= −

1

c
(u − a + bv) . (1)

The variable u is roughly associated with the membrane

potential and the variable v with the ion currents through

the cell membrane. The values u = u0 = 1.2 and

v = v0 = −0.6 denote the resting state. The diffusion co-

efficient D describes the coupling between the cells, and

z is an applied external current (stimulus). The detailed

effect of the parameters a, b and c on the pulses is com-

plicated due to mutual interdependencies originating from

the nonlinearity in Eq. (1). Roughly speaking, a affects

the length of the refractory period, b influences the stabil-

ity of the resting state, and c controls the excitability and

strength of the cells’ response to a stimulus. The set of pa-

rameters D = D0 = 0.1, a = a0 = 0.7, b = b0 = 0.6,

and c = c0 = 5.5 is associated with a “healthy tissue” in

the following.

The calculations are carried out on a two-dimensional

simulation area, which is considered to represent an iso-

lated section of atrial heart tissue as it is used often in ex-
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periments [6–8]. The boundary conditions of the simula-

tion area are of von Neumann type, i. e. ∂u/∂n = 0, where

∂/∂n denotes the normal derivative. To solve the two non-

linear coupled partial differential equations (1) we use the

finite element method (FEM) with a triangulation consist-

ing of 66049 nodes and 131072 triangles, and a constant

integration time step ∆t = 0.01. A simulation time of 1
corresponds to a time of roughly 5 to 5.5 ms. The nonlin-

earity u3(~x, t) in Eq. (1) is treated as an inhomogeneity,

which means that for u(~x, ti) the value u(~x, ti−1) of the

preceding time step is used.

3. Results

3.1. Wavefront-obstacle interaction: func-

tional versus anatomical reentry

Spiral waves in the atria can be generated by a pinning

of planar waves to anatomic obstacles as, for example, the

pulmonary veins or the venae cavae, or some localized re-

gion of modified tissue [1, 8–10]. In contrast to previous

studies of wavefront-obstacle interaction, where the obsta-

cle was represented by a hole of the simulation area [11,12]

or a passive area [13], we model them as regions with a re-

duced parameter c, describing a gradual reduction of the

excitability, according to

c(x, y)=c0 − ∆c exp(−
√

(x − x0)2 + (y − y0)2/ξc) , (2)

where the amplitude ∆c characterizes the strength, and

the correlation length ξc characterizes the spatial range of

modification.

We perform numerical calculations with the following

initial state and parameters settings: the modified region,

is placed in the center of the simulation area at x0 = y0 =
10. Initially a “planar” (linear) wave is generated aside

the obstacle by inducing a current z = −1 with duration

tz = 1 in the stripe x0 − 0.5 ≤ x ≤ x0, 0 ≤ y ≤ y0 − ξc,

and by setting the area 0 ≤ x ≤ 9.5, 0 ≤ y ≤ 10 into

a refractory state (u = 1.6, v = 0), while the rest of the

simulation area is in the resting state (u = u0, v = v0).

This initial state resembles the activation pattern directly

after application of a cross-field stimulation and yields a

reentrant wave for all ∆c and ξc.

Figure 1 shows activation patterns for the obstacle size

ξc = 2 and two values a) ∆c = 4.5, and b) ∆c = 1.5.

The stronger reduction of excitability in Fig. 1a leads to an

anchoring of the spiral wave, while in Fig. 1b the spiral is

meandering. To analyze the parameter regimes of the oc-

currence of anchored or meandering spiral waves, we per-

form a frequency analysis for different values of ∆c and

ξc. Therefore, we determine the peak positions in the time

series of u at 8 positions far away from the center of the

spiral and calculate the peak-to-peak intervals ∆ti,j . The
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Figure 1. Isolines for u = −0.8 for an obstacle (marked

by the black circle) with ξc = 2 and a) ∆c = 4.5 and b)

∆c = 1.5 at four different times: black solid line: a,b)

t = 82, red dotted line: a) 87, b) 84.5, blue dasehd line:

a) 92, b) 87 and green dash-dotted line: a) t = 97 and b)

t = 89.5.

mean cycle length is given by:

1/f = (8n)−1
∑8

j=1

∑n

i=1 ∆ti,j . The results in Fig. 2
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Figure 2. Mean cycle length 1/f as a function of obstacle

size ξc for four different strength of the modification of

excitability ∆c. The dashed lines are fits to the data.

show that, as in experiments [7, 9], attached spiral waves

occur for large ∆c ≥ 3 and for sufficiently large ξc >
ξ⋆
c , where ξ⋆

c decreases with increasing ∆c. For these

anchored spirals, the frequency is proportional to f =
η/2πξc, where η ≃ 0.82 is the conduction velocity in the

FHN model. For small ∆c ≤ 3, only meandering spirals

are observed. The transition from large to small ∆c re-

flects the transition from anatomical to functional reentry

[14], as it has been reported in medical studies [9]. Note,

that despite the spiral wave is not anchored to the obstacle,

its movement is still influenced by the obstacle.

In a further calculation a wavefront was generated at the

left boundary (induced current z = −1, tz = 1 in the stripe

0 ≤ x ≤ 0.5, 0 ≤ y ≤ 10 − ξc). This wavefront, although

it starts to curl, does not become reentrant since it ”col-

lides” with the boundary. If the obstacle is placed near

the non-conducting boundary at x0 = 0.5 + ξc, y0 = 10,

three different types of spatio-temporal patterns can occur
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in dependence of ξc and ∆c. As shown in Fig. 3, reen-

trant behaviour is only observed for sufficiently large ξc.

For large ξc (& 0.5) a stable spiral wave is only found for

large ∆c (& 3), while for smaller ∆c (. 3) the wave-

front shows only two or three reentries before eventually

the self-excitatory behaviour breaks down. This suggests,

that unsuccessful ablations of tissue for suppression of AF

are related to the presence of locally modified regions with

both a large size and modification strength.
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Figure 3. Number of circulations of the excitation wave

depending on the obstacle size ξc and the difference in ex-

citability ∆c. The dashed line marks the region, where

stable spiral waves are observed.

3.2. Wavefront-wavefront interaction: gen-

eration of fibrillation

In order to understand how regular sources as spiral

waves, often observed in the left atrium [2, 3], can yield

irregular, fibrillatory excitation patterns, occuring at the

same time in the right atrium [4], we investigate the per-

turbation of regularly paced waves generated by the sinus

node by waves emanating from an additional pacemaker

located in a distant region.

To this end we consider the waves to be located in

spatially separated regions that are connected by a small

bridge. To be specific, we choose a simulation area of size

21 × 10, which is divided into three regions (see Fig. 4).

The rectangular area L with 0 ≤ x, y ≤ 10 representing

the left atrium, the rectangular area R with 11 ≤ x ≤ 21,

0 ≤ y ≤ 10 representing the right atrium, and the small

bridge with 10 < x < 11, y ⊂ [5 − w/2, 5 + w/2] rep-

resenting the connection between the atria. The grid used

in the finite element calculations consists of in total 8871

nodes and 17350 triangles. The activation waves repre-

senting the sinus node in region R are generated by the

application of a current z = −1 with duration tz = 1 and

period 1/fpace in the region 11 ≤ x ≤ 21 and y ≤ 0.5.
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Figure 4. Illustration of the simulation area.

The wavefronts of the perturbing pacemaker are approxi-

mated as planar, thus representing a self-excitatory pace-

maker located far outside the left part of the simulation

area. They are generated by application of a stimulating

current z = −1 with duration tz = 1 = 100∆t and a

period 1/fpert in the region x ≤ 0.5 and 0 ≤ y ≤ 10.

The irregularity of the resulting patterns in region R is

quantified by calculating the Shannon entropy S of the dis-

tribution of local activation frequencies in R. The normal-

ized entropy is given by

s =
S

Smax

= −

∑Nb

l=1 pl ln pl

lnNb

, (3)

where pl denotes the probability of finding frequency f in

bin l and Nb the number of bins. For a single frequency

(pl = δl,l0), s = 0, while for a chaotic activation pattern

with a uniform distribution (pl = 1/Nb), s = 1.

For small perturbation frequencies (fpert ≤ 0.1) the in-

fluence of the activation wavefronts from the additional

pacemaker onto the sinus node waves is almost negligible.

Small deformations of the linear wavefronts are observed,

but the measured frequencies are close to the pacing fre-

quency, and the overall spatiotemporal pattern in R is reg-

ular.

With increasing perturbation frequency the excitation

pattern in region R becomes more irregular and a breakup

of the regularly paced waves can occur. We note that the

spatial irregularity of the patterns incorporates also irregu-

larities in the time evolution as, for example, unsuccesful

activations or changes of the shape of the action poten-

tial. The corresponding Shannon entropy s of the local

frequency distribution in R is shown in Fig. 5 as a func-

tion of the frequency fpert of the perturbing waves from

region L for different widths w of the bridge. For small

perturbation frequencies fpert ≤ 0.1, the entropy s equals

the unperturbed case, while for fpert ≥ 0.1, s sharply in-

creases until it reaches a maximum at fpert ≃ 0.1075. For

higher fpert a return to more regular activation pattern is

found due to the increasing dominance of the perturbing

pacemaker. The irregularity of the system increases, if the
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width of the brigde between region R and L is increased but

the overall dependence of s on the perturbation frequency

remains the same.
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Figure 5. Normalized entropy of the local frequency dis-

tribution in region R as a function of the perturbation fre-

quency fpert in region L ( fpace = 0.091 in R). The dashed

line marks the value of s for the unperturbed case.

4. Summary and conclusions

The influence of regions with a reduced excitability,

called ”obstacles”, on the generation and properties of

reentrant wavefronts was investigated on the basis of the

FitzHugh-Nagumo equations with von Neumann bound-

ary conditions. If the obstacle is placed in the middle of a

two-dimensional square simulation area, we observe reen-

trant waves, which exhibit either functional or anatomical

reentry in dependence of the obstacle size and reduction

of excitability. An analysis of the spiral wave frequency

in dependence of the obstacle size yields results in ac-

cordance with experimental observations [7, 9]. Reentrant

wavefronts generated at one boundary, which collide and

vanish at the boundary during the reentry circle, can be

stabilized by an obstacle located near this boundary for a

certain range of obstacle sizes and reduction of excitability.

The question how regular sources as spiral waves, often

observed in the left atrium, can yield irregular, fibrillatory

excitation patterns is tackled by investigating the perturba-

tion of regular paced waves generated by the sinus node

by a second pacemaker, e.g. a spiral wave. Thereby both

sources of excitation wave are located in two distinct re-

gions connected only by a small bridge. This perturbation

of the regular paced waves by waves emanating a second

pacemaker results, for a certain range of perturbation fre-

quencies, in irregular excitation patterns, describing fibril-

latory behaviour. The spatial variation of the excitation

frequency was quantified in terms of an entropy, which

showed, for a given pacing frequency, a maximum as a

function of the perturbation frequency. The strength of ir-

regularity of the patterns, as quantified by the value of the

maximum of s, depends on the width w of the bridge. For

large perturbation frequencies the system is dominated by

the perturbing pacemaker resulting in more regular excita-

tion patterns.

Acknowledgements

C. L. thanks the Thuringian government for financial

support.

References

[1] Wu T-J, Yashima M, Xie F, Athill CA, Kim Y-H, Fishbein MC,

Qu Z, Garfinkel A, Weiss JN, Karagueuzian HS, Chen P-S. Role

of pectinate muscle bundles in the generation and maintenance of

intra-atrial reentry: potential implications for the mechanism of

conversion between atrial fibrillation and atrial flutter. Circ. Res.

1998;83:448–462.

[2] Sanders P, Berenfeld O, Hocini M, Jais P, Vaidyanathan R, Hsu L-

F, Garrigue S, Takahashi Y, Rotter M, Sacher F, Scavee C, Ploutz-

Snyder R, Jalife J, Haisaguerre M. Spectral analysis identifies sites

of high-frequency activity maintaining atrial fibrillation in humans.

Circulation 2005;112:789–797.

[3] Mandapati R, Skanes A, Chen Y, Berenfeld O, Jalife J. Stable mi-

croreentrant sources as a mechanism of atrial fibrillation in the iso-

lated sheep heart. Circulation 2000;101:194–199.

[4] Sahadevan J, Ryu K, Peltz L, Khrestian CM, Stewart RW,

Markowitz AH, Waldo AL. Epicardial mapping of chronic

atrial fibrillation patients: preliminary observations. Circulation

2004;110:3293–3299.

[5] FitzHugh R. Impulses and physiological states in theoretical mod-

els of nerve membrane. Biophys. J. 1961;1:445–466.

[6] Iravanian S, Nabutovsky Y, Kong C-R, Saha S, Bursac N, Tung L.

Functional reentry in cultured monolayers of neonatal rat cardiac

cells. Am. J. Physiol. Heart Circ. Physiol. 2003;285:H449–H456.

[7] Ikeda T, Czer L, Trento A, Hwang C, Ong JJC, Hough D, Fishbein

MC, Mandel WJ, Karagueuzian HS, Chen P-S. Induction of me-

andering functional reentrant wave front in isolated human atrial

tissue. Circulation 1997;96:3013–3020.

[8] Ikeda T, Yashima M, Uchida T, Hough D, Fishbein MC. Attach-

ment of meandering reentrant wave fronts to anatomic obstacles.

Circ. Res. 1997;81:753–764.

[9] Lim ZY, Maskara B, Aguel F, Emokpae RJ, Tung L. Spi-

ral wave attachment to millimeter-sized obstacles. Circulation

2006;114:2113–2121.

[10] Pertsov AM, Davidenko JM, Salomonsz R, Baxter WT, Jalife J.

Spiral waves of excitation underlie reentrant activity in isolated car-

diac muscle. Circ. Res. 1993;72:631–650.

[11] Xie F, Qu Z, Garfinkel A. Dynamics of reentry around a circular

obstacle in cardiac tissue. Phys. Rev. E 1998;58:6355–6358.

[12] Pertsov AM, Ermakova EA, Panfilov AV. Rotating spiral waves in a

modified Fitz-Hugh-Nagumo model. Physica D 1984;14:117–124.

[13] Azene EA, Trayanova NA, Warman E. Wave front-obstacle interac-

tions in cardiac tissue: a computational study. Ann. Biomed. Eng.

2001;29:35–46.

[14] Boersma L, Brugada J, Kirchhof C, Allessie M. Mapping of reset

of anatomic and functional reentry in anisotropic rabbit ventricular

myocardium. Circulation 1994;89:852–862.

Address for correspondence:

Claudia Lenk
FG Theoretische Physik 2 (IfP)
Technische Universität Ilmenau
Weimarer Strasse 25, 98693 Ilmenau,Germany
claudia.lenk@tu-ilmenau.de

428


