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Abstract

Today, the only robust technique for terminating ventric-

ular fibrillation is an electrical shock of up to 400 joules. A

reliable more gentle alternative to this procedure is desir-

able, as the strong currents of the shock may result in car-

diac lesions and therefore may increase the risk of further

abnormal heart rhythms. Reentrant arrhythmias are asso-

ciated with the existence of spiral waves in the tissue. Their

termination by local control is substantially limited by an-

choring of these waves at natural heterogeneities. Far-field

pacing (FFP) is a control strategy that has been shown to

be capable of unpinning waves from obstacles. The suc-

cess of unpinning is both frequency-dependent and sensi-

tive to the initial position of the spiral. Therefore, in this

article, we systematically analyze the response of a single

pinned wave to FFP. By quantifying the response of the

wave for a single pulse in a generic model of excitable me-

dia and incorporating the results into an iterative map, we

predict the response of the wave to multiple pulses.

1. Introduction

Generic activation patterns such as plane waves, spiral

waves and spiral defect chaos which are known from many

different excitable media also occur in cardiac tissue. Nor-

mal activity is associated with plane waves. During tachy-

cardias, reentrant waves (spiral or scroll waves) produce

increased heart rate. Effects such as spiral wave breakup

can ultimately lead to a state composed of many (possibly

unstable) spirals which represents lethal ventricular fibril-

lation [1]. In this article we examine a control method

known as far-field pacing (FFP), which exploits natural

heterogeneities in the tissue and has been discussed in a

number of studies (e.g. [2]). Experimentally, the tissue

is subjected to a weak pulsed electric field. FFP has been

shown to be capable of unpinning a spiral wave which is

pinned to a heterogeneity (called “obstacle” in the follow-

ing). Although the method is very promising in providing

an alternative approach to even terminate fast arrhythmias

and fibrillation [3], the mechanisms are still not well un-

derstood. Therefore this numerical study tries to systemat-

ically develop an understanding of the response of pinned

spiral waves to periodic FFP. This is done by quantitatively

analyzing the response to a single stimulus and extrapolat-

ing the obtained information to multiple stimuli. Thus, the

aim is to get a picture of the essential effects which influ-

ence the reaction of a pinned wave to a stimulus train and

to provide an alternative to the trial-and-error approach for

finding optimal pacing frequencies.

2. Methods

2.1. Computational model

All simulations in this article are carried out using the

Barkley model [4] with the reaction-diffusion equations
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consisting of a fast variable u, a slow inhibitory variable

v and three parameters ǫ = 0.02 (determining the time

scale of the fast variable), a = 0.8 and b = 0.09. All sim-

ulations were carried out with a constant spatial resolution

of ∆x = 1/6 and a simple Euler time step of ∆t = 1/500.

More details on the boundary conditions for modeling the

obstacle can be found in reference [5]. All plots in the

result section in this paper refer exemplariliy to simula-

tions with an obstacle of radius R=3. At this obstacle size,

the spiral wave’s undisturbed rotation period is roughly 7.5

time units. FFP in all simulations was applied with a field

strength of E=3 and a pulseduration of 0.1 time units. For

other obstacle sizes and field strengths we obtain similar

results.

2.2. Unpinning and success rate

The success of the unpinning mechanism critically de-

pends on the position of the spiral at the time of the

pulse. In the following, we will refer to this position as

the “phase” ϕ ∈ [0, 1[ of the spiral, ϕ = 0 conveniently

chosen as the place of FFP wave nucleation. There is only
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Figure 1. Successfull unpinning by FFP in a generic

model of excitable media. N: wave nucleated by electric

pulse. F: End of the new free spiral wave. E: End of the

wave annihilating with the initial spiral wave. The new

spiral core is indicated by a circular white line. Figure re-

produced from [6].

a finite so-called unpinning window (i.e., a limited range

of phases), in which unpinning is possible in the way de-

picted in figure 1. For an experimental situation, in which

the phase of the spiral is not known (e.g., during cardiac

fibrillation), the fraction of the phase interval [0, 1[ , in

which unpinning is possible, can be viewed as a success

rate for a single pulse to unpin the spiral wave from the

obstacle. Similarly, a success rate can be defined for mul-

tiple pulses by determining the fraction of initial phases for

which, after a sequence of pulses, the spiral wave has been

unpinned from the obstacle.

2.3. Phase response

The qualitative structure of the unpinning window for

single pulses has already been the subject of previous stud-

ies [6, 7].

A single pulse can (i) unpin the spiral wave from the ob-

stacle (unpinning window), (ii) have no effect at all (within

the refractory tail) or (iii) produce a new wave (within the

excitable gap).

To quantitatively characterize the response of a spiral to a

single FFP stimulus, we calculate phase response curves.

This is a map of the phase immediately before the pulse to

the “apparent phase” after the pulse. The phase change is

computed from the difference between the perturbed and

the unperturbed spiral period and is assumed to happen

instantaneously with the pulse (followed by rigid rotation

with the unperturbed velocity). Obviously, these assump-

tions are not true. Thus, the resulting phase is called the

“apparent phase”. It is an auxiliary construct that allows

for easy calculation of the phase at arbitrary times after the

pulse, only by knowing the unperturbed propagation ve-

locity of the spiral. However, one should bear in mind that

the result is only meaningful for times when the real spiral

has truly resumed rigid rotation with constant velocity.

In section 3.2, we will use the obtained phase response

curve to predict the response of the spiral for multiple

pulses.

3. Results

3.1. Unpinning success

To quantify the ability of a stimulus train to unpin

waves, we carry out simulations with different initial

phases at the beginning of pacing. We then determine

the success rate described in section 2.2 as the fraction of

initial phases resulting in successful unpinning. Figure 2

shows the results for fpacing/fspiral ∈ [0.1, 2].
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Figure 2. Unpinning success rates for up to 8 periodic

pulses (p1 to p8). fpacing/fspiral ∈ [0.1, 2]; number of

simulations for each frequency = 96; medium parameters

and FFP specifications as listed in section 2.1.

From figure 2, we see that there are certain frequency

regimes in which multiple pulses are very successful and

others where multiple pulses lead to the same or even lower

success rates than that of a single pulse. We will learn more

about the underlying mechanisms in section 3.2.

Cases in which the success rate for multiple pulses is even

lower than for a single pulse are due to so-called repinning,

i.e. reattachment of the free unpinned wave to the obsta-

cle. This can happen as a result of meandering or due to

interaction of the free spiral with subsequent pulses.

3.2. Phase response and iterative map

The phase response curve (labeled g(ϕ)) for a single spi-

ral is shown in figure 2. Interestingly, except for the un-

pinning window, no abrupt changes in the apparent phase

are visible, which one would have expected thinking of the

regimes (i), (ii) and (iii) mentioned in section 2.3.

Qualitatively, the characteristics of the phase response

curves measured in [8] in the FitzHugh-Nagumo Model

are consistent with our results. Quantitatively, the shape of

the curve differs slightly due to model-dependent dynam-

ics.
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Figure 3. The functions g(ϕ) and h(ϕ) = g(ϕ) +
fspiral/fpacing are plotted against the phase at which the

pulse is given. The resulting phase is mapped to the in-

terval [-0.4,0.4[. The intervall, for which no data points

exist, corresponds to the unpinning window. The identity

is plotted as a dashed line, corresponding to an unchanged

phase. fpacing/fspiral = 1.05; medium parameters and FFP

specifications as listed in section 2.1.

With the help of the phase response curve, we now

construct an iterative map to predict the response of the

spiral to multiple stimuli: Let g(ϕ) be the phase re-

sponse function. Because of the way the phase response

curve was constructed in section 2.3, we can assume that,

between two pulses, the spiral advances uniformly by

fspiral/fpacing (in phase units). Thus, the map that trans-

forms the phase of a spiral before one pulse into the phase

before the next pulse is h(ϕ) = g(ϕ) + fspiral/fpacing

(followed by a modulo operation that takes the phase back

to the unit interval). Of course, this function is unde-

fined where g(ϕ) is undefined (corresponding to success-

ful unpinning). We can interpret h(ϕ) as an iterative map

ϕn+1 = h(ϕn). For a specific pacing frequency, the

success rate corresponds to the fraction of initial phases

ϕ0 ∈ [0, 1[ for which (during Npulses iterative applications

of h(ϕ)) the result becomes undefined. For the rest of ini-

tial phases, ϕNpulses
corresponds to the phase of the spiral

one pacing period after the last pulse.

The intersection of h(ϕ) with the identity function indi-

cates the existence of fixed points in the iterative map. It

is the existence of these fixed points that leads to the phase

resetting mechanism described in [7]. At certain frequen-

cies this mechanism avoids an increase of the success rate

by multiple pulses compared to that of a single pulse.

By plotting the phase ϕn of the spiral at the moment of

the nth pulse, we get an idea of a mechanism that we call

phase scanning. Figure 4 illustrates how the spiral’s phase

is shifted by each pulse until it reaches the unpinning win-

dow. Due to this mechanism, the success rate at certain

frequencies is very high. The ideal combination of number

of pulses and pacing frequency depends on the spiral’s ro-

tation period and hence on the obstacle size and the choice

of model parameters.
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Figure 4. Phase scanning mechanism at fpacing/fspiral =
0.8. Top: Apparent phase ϕn at the moment of nth pulse.

The light grey bar indicates the unpinning window. Bot-

tom: Success rate after nth pulse. Medium parameters and

FFP specifications as listed in section 2.1.

3.3. Predictions by the iterated map

Figure 6 shows the success rate predicted by the iter-

ative map h(ϕ) in comparison to the results obtained by

numerical simulations. As a result of the high computa-

tional effort, the resolution of the numerically computed

success rate is 0.1 whereas the map was computed for fre-

quency intervals of 0.0001. For pacing frequencies slower

than the spiral frequency, the map is largely able to accu-

rately predict the unpinning success rate for further pulses.

For high pacing frequencies, the interaction of consecutive

pulses with each other leads to deviations of the predicted

phase response from the response obtained by direct nu-

merical simulation.

The success rate prediction shows a repetitive structure

which results from the fact, that (for fpacing ≤ fspiral) the

ratio fspiral/fpacing mod 1 is decisive for the unpinning

result. To make sure that the fine structure of the predicted

success rate is actually due to physical mechanisms of the

model and not just a numerical artifact, the success rate for

the frequency range fpacing/fspiral ∈ [0.5, 1] was again

computed from full simulations with a resolution of 0.01.
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From figure 5 we can see that the predicted and the numer-

ical results fit nicely except for some local deviations.
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Figure 5. Success rate after 8 pulses. Red: Success rate

obtained from numerical simulations (frequencies in steps

of 0.1). Black: Success rate computed with iterative map

(frequencies in steps of 0.0001). Medium parameters and

FFP specifications as listed in section 2.1.

4. Discussion and conclusions

We conclude that, for fpacing / fspiral, the unpinning

success of multiple FFP pulses can be predicted by the it-

eration of the phase response of a single pulse only. We

have confirmed the mechanisms of “phase scanning” and

“phase resetting” that lead to very high and very low un-

pinning success rates respectively.

In [8] González et al. compare the results of numerical

single pulse phase response measurements to experimen-

tal data gained from cell culture experiments. Further in-

vestigations will be necessary to study the significance of

numerically predicted success rates for experimental situ-

ations.
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