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Abstract

Real-time monitoring of vital physiological signals is of

significant clinical relevance. Disruptions in the signals

are frequently encountered and make it difficult for precise

diagnosis. Thus, the ability to accurately predict/recover

the lost signals could greatly impact medical research and

application. In response to the PhysioNet/CinC Challenge

2010: Mind the Gap, we develop an algorithm based on

artificial neural networks to predict the missing signals in

one channel using the measurements in other channels. An

artificial neural network model is created for each record,

which consists of 6, 7, or 8 signals acquired from bedside

ICU patient monitors. We first train the network using data

from the beginning 9.5 minutes of the record. Then, we re-

construct the missing data in the subsequent 30 seconds

for a specific channel. A few techniques are utilized to

improve the performance of the model. Principal compo-

nent analysis is used to reduce complexity and computa-

tional cost. Noisy signals are smoothed using a wavelet-

based de-noising algorithm before training and testing. We

explored three different neural networks: focused time-

delayed neural network, distributed time-delayed neural

network, and nonlinear autoregressive network with ex-

ogenous inputs. The focused time-delayed neural network

is more computationally efficient while the other two net-

works provide slightly more precise predictions. For highly

correlated data sets, all three networks are able to produce

accurate predictions; however, predictions of chaotic and

highly noisy data sets are less satisfactory.

1. Introduction

Real time monitoring of physiological signals, including

ECG, blood pressure, respiration, plethysmograms, etc., is

an essential tool in hospitals and institutes, especially in

intensive care. Figure 1 shows the clinical setting of an

intensive care unit (ICU).

There are a number of factors that interrupt data signals

when patients are in clinical intensive care. Disruptions

Figure 1. Clinical setting of an intensive care unit; Figure

from [1].

Figure 2. Example showing sudden missing of physiolog-

ical information. Here, the three channels are respiration,

plethysmograms, and ECG. Figure obtained from [2].

such as standing, walking, or eating meals could cause sen-

sors to disconnect or become removed. Figure 2 shows one

example, where one of the three channels is suddenly lost.

Also, signals such as respiration can be consciously con-

trolled while signals such as blood pressure can be quickly

influenced by external triggers. Therefore, it is critical that

an algorithm created to predict physiological signals ad-

dress the fact that some of the features from the signals

may not be representative of pertinent data needed to diag-

nose.

This work is in response to the 2010 Physionet Chal-
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Figure 3. Example of typical ECG signal; Figure from [3].

lenge: Mind the Gap [2]. The purpose of the challenge

is to construct models to predict the final 30 seconds of a

channel from a 6-8 channel data set consisting of 10 min-

utes of data. The data is sampled at 125 Hz for the full

ten minutes for each record. Each data set is representa-

tive of a different patient. The data is supplied from real

patients receiving intensive care at hospitals. Each of the

6-8 channels include data from various physiological test-

ing devices. Most of the signals consist of ECG I, II, and V

data along with respiration and plethysmograph. Other sig-

nals that are presented less frequently because the sensors

require invasive procedures include central venous pres-

sure, arterial pressure and pulmonary arterial pressure. The

ECG signals are all monitoring changes in the electrical

activity from the heart using skin sensors placed in differ-

ent positions on the body. Respiration is the measurement

of patient breathing and the plethysmograph (pleth) is the

measurement of blood flow through an optical sensor that

is typically placed on the finger.

The normal electrocardiogram (ECG) is composed of a

P wave, a QRS complex, and a T wave [3]; see Figure 3.

The P wave and the components of QRS are respectively

caused by the depolarization of the atria and the ventricles,

while the T wave corresponds to ventricular repolariza-

tion. Since the ECG provides abundant information about

the heart’s activities, almost all severe abnormalities of the

heart muscle can be detected through analyzing the ECG

[4]. However abnormalities such as arrhythmias may ap-

pear intermittently. Thus real time monitoring is essential.

2. Methodology

Artificial neural networks are mathematical models that

are designed to “think” like the human brain. A network

model consists of interconnected group of artificial neu-

rons that emulate the function of neuron cells. Neural net-

work models can learn from data by certain training rules.

Neural networks have now been widely used for modeling,

prediction, classification, and control [5].

We attempt this challenge problem using several dif-

ferent neural networks, including focused time-delay neu-

ral network (FTD), distributed time-delay neural network

(DTD), nonlinear autoregressive network with exogenous

inputs (NARX) network, and feedforward network. In

each of these models, we used all of the signals provided

for each record to make a prediction of the missing data

signal. The complete signals were considered training sets

and the 30-second record of missing data were considered

test sets. Because of the highly nonlinear and chaotic be-

havior of the signals, the training set was reduced from all

71,250 data points to various smaller intervals. Training

on a smaller interval reduced the need for the network to

train chaotic behaviors that may not have been present in

the test set. While a smaller training set was used, each

of the complete data signals from each record was used as

an input in the network. The missing channel was used

as an output and tested against the prediction for training

purposes. In the training set, we used mean squared error

(MSE) to determine the relative error for each test.

Neural network models have many parameters that must

be formulated when creating a model. While some can be

selected to match the model type (for example, the linear

or tansig transfer function can be selected when a data set

does not appear exponentially correlated), others must be

selected carefully and fully tested. In our model, we tried

to obtain optimality by testing training set range, delay-

vectors, number of neurons, and computational efficiency.

Two scores are used by physionet to evaluate the pre-

diction results. Denote the target signal by xi and the pre-

dicted signal by yi, where i = 1, 2, . . . , N . Then score 1

is defined as follows
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Note that score 1 can be interpreted as Q1 = 1 −

mse (x, y) /var (x), where mse stands for mean squared

error and var stands for variance. The score 2 is defined
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Note that score 2 is essentially the correlation coefficient

between the target and the predicted signals.

3. Results

We carry out extensive numerical studies using the neu-

ral network toolbox in Matlab [6]. Preliminary studies

show that, using the same training data and training mech-

anism, the FTD network is faster and more accurate than

the DTD and NARX network. In the following, we present

only results using FTD networks. In all simulations, we

use a network with 2 hidden layers, where the first hid-

den layer has 10 neurons and the second hidden layer has

1 neuron. We use tansig and purelin as the transfer func-

tions [6].

Physionet provides 3 sets of data for the challenge prob-

lem. Set A is the only complete data set, where the missing

signals of each record are provided, making it convenient

to evaluate the results of prediction. The following results

are based on records in set A. However, the final scores of

all sets are given in Table 1.

The FTD network is robust and can provide very good

predictions even for seemingly irregular time series. For

example, results of a record (a02) from set A are shown in

Figure 4. The scores of the prediction are Q1 = 0.92 and

Q2 = 0.96.
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Figure 4. Comparison between predicted (dotted) and ac-

tual (solid) signals for a selected record (a02).

To explore the influences of delay and length of training

data, we study different combinations of two delay vec-

tors and three training length. We denote the two delay

vectors by d1 and d2, respectively, and the three training

lengths by l1, l2, and l3, respectively. Both d1 and d2
contain 11 elements, where the components of d1 con-

tinuously increase from 0 to 10 and d2 is chosen to be

[0, 1, 3, 4, 8, 16, 32, 64, 128]. Thus delay 1 can be regarded

as a short-term delay whereas delay 2 is a mix of short-

term and long-term delays. The three training lengths are

chosen to be l1 = 10000, l2 = 15000, and l3 = 20000,

respectively. The training data are immediately prior the

missing signal. We study the effects of the 6 different pa-

rameter sets: (d1, l1), (d2, l1), (d1, l2), (d2, l2), (d1, l3),
(d2, l3). Figure 5 shows the boxplots of the 100 records of

set A using the 6 different parameter sets. It is clear that,

for the same training length, the mean score of d2 is larger

than that of d1 whereas for the same delay vector, the mean

score of l3 is the largest.
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Figure 5. Box plots of the scores for 6 different stud-

ies; see text for details about the parameters. Black circles

show the mean values of 100 records of set A.

We also study the effect of epochs using delay vector d2
and training length l1. Figure 6 shows the mean Q1 and

Q2 scores under various values of epochs. It is interesting

to notice that the dependence of the mean scores on the

training epochs exhibits an oscillatory pattern. Moreover,

the optimal scores are obtained at around 30 epochs.

Similarly, we investigate the influences of different

training lengths when other parameters are kept constant;

see Figure 7. Here, we choose the delay vector to be d2
and the epochs to be 20. Then, the length of training data

is varied from 2000 to 50000. It is noticed that best mean

scores in Q1 and Q2 are obtained when the training length

is around 25000 for the current delay vector and epochs.
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Figure 6. Mean scores using epochs: Q1 (bottom) and Q2

(top).
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Figure 7. Mean scores using different training lengths: Q1

(bottom) and Q2 (top).

4. Discussion and Conclusions

We have explored the data reconstruction problem us-

ing different types of artificial neural networks. Empirical

studies show that focused time delay networks are more

robust, efficient, and accurate when compared to other net-

works. In order to achieve optimal prediction results, we

have carried out extensive numerical simulations to ex-

plore the influences of various network parameters, includ-

ing training length, delay vector, and training epochs. Due

to limitation in time and computational resources, it is dif-

ficult to completely explore the feasible parameter space.

An optimal searching approach such as genetic algorithm

may be helpful. In the current studies, we have kept the

layers and neurons of the network fixed. It will be inter-

esting to investigate the influences of the different network

structures.

We have observed a few useful techniques to improve

the accuracy of prediction. First, better results can be ob-

tained by a mix of short- and long-term delay outperforms

short-term delays of the same length. This may be due

to the “memory” effect of physiological systems. Second,

we have designed a feedback algorithm that can improve

the quality of prediction. Finally, we have found that av-

eraging the predicted results from multiple iterations can

further improve the accuracy.

As of the deadline on September 1st, 2010, the best

scores of our tests for each data set are shown in Table 1.

Both Q1 and Q2 values rank second among all participants

of the challenge.

Table 1. Scores for different data sets.
set A set B set C

aggregate Q1 80.25 83.42 81.33
aggregate Q2 89.15 89.78 89.67
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