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Abstract

The majority of recent studies on ischaemia during the

ST segment assume that ischaemia progresses from the

endocardium to the epicardium and the ischaemic region

is rectangular in shape. The presence of sharp edges in

these models plays a significant role in the determination

of ST segment epicardial potential distributions (EPDs),

with current loops forming around these edges. This nu-

merical study looks at ischaemic geometries which remove

some or all of the sharp edges and how this affects the re-

sulting EPDs. The two key ischaemic region geometries

studied are cylindrical and semi-ellipsoidal in shape.

Using a simple anisotropic model for the cardiac ge-

ometry and realistic conductivity values, this study shows

that cylindrical ischaemic regions give similar results to

their rectangular counterparts. However ellispoidal ge-

ometries differ, especially at medium levels (30%-70%) of

ischaemia, where the EPD splits into 2 depressions instead

of the 3 found with the other ischaemic geometries.

1. Introduction

Deviation of the ST segment in the electrocardiogram

(ECG) is widely accepted as an indicator of ischaemia in

the heart. The mechanisms behind this behaviour how-

ever, are not yet fully understood [1] and there is no clear

consensus on the measured extracellular epicardial poten-

tials. In recent years, the advancement of computing tech-

nology has allowed numerical models to quickly and non-

invasively examine scenarios which could not be done by

their experimental counterparts. A large amount of this re-

search has been dedicated to understanding the effect of

ischaemia on the ST segment of the ECG [2–5]. It is well

understood from these numerical studies that full thickness

ishemia leads to ST segment elevation over the ischaemic

region. For the case where the ischaemic region has not

extended to the epicardium, the results begin to vary, due

to the differing choices in parameters such as conductiv-

ity and fibre rotation. The earliest numerical models [6, 7]

used isotropic conductivities and ignored cardiac fibre ro-

tation. Work by Johnston et al. [2] however, showed that

anisotropy must be incorporated in order to achieve realis-

tic results. The more recent experimental [8] and numeri-

cal [4,5] studies using anisotropic conductivity values have

shown that at low thickness ischaemia, depression is found

over the ischaemic region while at higher thicknesses, ele-

vation occus over the ischaemic region and depression over

the ischaemic lateral borders. The different choices of vi-

tal parameters between models however resulted in noti-

cable differences for medium levels of ischaemia (30%-

70%). One consistent result noticed in these studies was

the formation of ‘current loops’ around the ischaemic re-

gion, which arise due to injury currents between tissues

of differing transmembrane potential. As these studies all

represent the ischaemic region in a ‘rectangular’ fashion,

the sharp corners allow for these loops to form.

The motivation for this study is to see whether these cur-

rent loops are still apparent in ischaemic geometries which

do not possess as many sharp corners and also how this

affects the EPDs. For this study three different ischaemic

geometries were used: rectangular, cylindrical and semi-

elipsoidal. The rectangular ischaemic geometry was used

to validate the model against the analyical results by John-

ston et al. [2] while the other geometries represented de-

creasing presence of the sharp edges.

2. Methods

As this study focusses on the ST segment of the ECG,

(the isoelectric phase), the steady state bidomain equation

can be employed to find the resulting epicardial potential

distributions. It has the following form;

∇ · (Mi +Me)∇φe = −∇ ·Mi∇φm (1)

where Mi and Mi are the intracellular and extracellular

conductivities and φe and φm are the extracellular and

transmembrane potentials, respectively. A simple slab

model introduced by Johnston et al. [2] was used to rep-

resent a ventricle wall. This model considered a 1cm thick

insulated slab of ventricular tissue with infinite length and

width. The epicardium was situated at z = 0 and the endo-

cardium at z = 1. A volume of blood of infinite thickness
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then sat on top of the tissue. The potential in the blood was

governed by the equation

∇2φb = 0 (2)

The advantage of using such a model was that for a well

chosen size and shape of ischaemic tissue, the model could

be solved analytically with the help of fourier transforms.

However, as the inversion was done numerically, the di-

mensions of the slab in the x and y directions needed to be

finite. It was found by Johnston et al. that a slab 16cm ×
16cm was large enough in order for the potentials to tend

to zero at the boundaries. For a more complete description

on the slab model including descriptions of the boundary

conditions, refer to [2].

The conductivity values used in this study were the same

as [2] and were based on the values given by Clerc et al.

[9]: σl
e = 0.625 S/m, σt

e = 0.236 S/m, σl
i = 0.174 S/m,

σt
i = 0.0193 S/m. Also, linear fibre rotation was included

with a total rotation from the endocardium to epicardium

of 120◦. These values were used so that the numerical

methods used in this study could be validated against the

previously found analytical solutions.

2.1. Rectangular ischaemic geometry

For the ischaemic region, the original slab model used a

rectangular geometry with a width of 4cm in the x and y di-

rections with the bottom in contact with the endocardium.

The ischaemic tissue was defined as having a transmem-

brane potential 30mV lower than that of normal tissue and

a smooth transition from ischaemic to healthy tissue was

employed. This was acheived by varying the transmem-

brane potential from 0mV to -30mV across the border zone

according to the equation

φm(x, y, z) = −30Ψ(x)Ψ(y)Ψ(1− z) (3)

In each spacial direction, the function Ψ(p) is defined as
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where ap is the half width of the ischaemic region in the re-

spective spatial direction, measured from the centre of the

border zone, and λp is a parameter to adjust the sharpness

of the transition. For this study, similar to previous work,

a value of 0.01 was chosen for λp in all directions.

2.2. Cylindrical ischaemic geometry

The cylindrical ischaemic region was constructed to

have similar size and border zone properties as the rect-

angular geometry. The cylinder was constructed with a ra-

dius of 2 and the equation for the transmembrane potential

was given by

φm(r, z) = −30Ψ(r)Ψ(1− z) (5)

where r is in the radial direction and Ψ is defined as in

equation (4). All other parameters were kept the same as

with the rectangular model to eliminate interference with

the results.

2.3. Semi-ellipsoidal ischaemic geometry

Like the cylindrical ischaemic zone, the ellipsoidal zone

was constructed to have a similar size as the rectangular

zone. It was constructed by taking the top hemisphere from

an oblate spheroid described by the equation

x2

a2r
+

y2

a2r
+

(z − 1)2

a2z
= 1 (6)

where ar is the radius at z = 1 and az is the vertical,

conjugate radius. A value of 2 was chosen for ar to be

consistent with the previous ischaemic geometries. The

transmembrane potential was governed by the equation

φm(d) =

{

−15e−
d
λ outside ischaemic region

15e−
d
λ − 30 inside ischaemic region

(7)

where d is the perpendicular distance to the centre of the

border zone and λ is again a parameter which controls the

sharpness of the transition.

3. Results and discussion

For the model using a rectangular ischaemic geometry,

the results show that at relatively low thicknesses of is-

chaemia (az < 30%), the epicardial potential distribution

has a single depression located directly over the ischaemic

region. As the ischaemic thickness is increased, this single

depression begins to seperate into three depressions, one

remaining above the ischaemic region and two over op-

posing lateral borders. By the time the thickness reaches

50%, the three depressions become quite distinct, as can

be seen in figure 1. When the ischaemic thickness is in-

creased above 70%, elevation started to occur in the ar-

eas between depressions. These areas of elevation quickly

consume the region above the ischaemia and once the is-

chaemic thickness reach 85%, the central depression is al-

most completely replaced with elevation. For a better un-

derstanding of this process, it is benificial to look at the

the current paths inside the slab model. Figure 2 shows

the general behaviour of these current paths for medium

ischaemic thicknesses by taking a cross section at x = 0.
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