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Abstract

The majority of recent studies on ischaemia during the
ST segment assume that ischaemia progresses from the
endocardium to the epicardium and the ischaemic region
is rectangular in shape. The presence of sharp edges in
these models plays a significant role in the determination
of ST segment epicardial potential distributions (EPDs),
with current loops forming around these edges. This nu-
merical study looks at ischaemic geometries which remove
some or all of the sharp edges and how this affects the re-
sulting EPDs. The two key ischaemic region geometries
studied are cylindrical and semi-ellipsoidal in shape.

Using a simple anisotropic model for the cardiac ge-
ometry and realistic conductivity values, this study shows
that cylindrical ischaemic regions give similar results to
their rectangular counterparts. However ellispoidal ge-
ometries differ, especially at medium levels (30%-70%) of
ischaemia, where the EPD splits into 2 depressions instead
of the 3 found with the other ischaemic geometries.

1. Introduction

Deviation of the ST segment in the electrocardiogram
(ECG) is widely accepted as an indicator of ischaemia in
the heart. The mechanisms behind this behaviour how-
ever, are not yet fully understood [1] and there is no clear
consensus on the measured extracellular epicardial poten-
tials. In recent years, the advancement of computing tech-
nology has allowed numerical models to quickly and non-
invasively examine scenarios which could not be done by
their experimental counterparts. A large amount of this re-
search has been dedicated to understanding the effect of
ischaemia on the ST segment of the ECG [2-5]. It is well
understood from these numerical studies that full thickness
ishemia leads to ST segment elevation over the ischaemic
region. For the case where the ischaemic region has not
extended to the epicardium, the results begin to vary, due
to the differing choices in parameters such as conductiv-
ity and fibre rotation. The earliest numerical models [6, 7]
used isotropic conductivities and ignored cardiac fibre ro-
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tation. Work by Johnston et al. [2] however, showed that
anisotropy must be incorporated in order to achieve realis-
tic results. The more recent experimental [8] and numeri-
cal [4,5] studies using anisotropic conductivity values have
shown that at low thickness ischaemia, depression is found
over the ischaemic region while at higher thicknesses, ele-
vation occus over the ischaemic region and depression over
the ischaemic lateral borders. The different choices of vi-
tal parameters between models however resulted in noti-
cable differences for medium levels of ischaemia (30%-
70%). One consistent result noticed in these studies was
the formation of ‘current loops’ around the ischaemic re-
gion, which arise due to injury currents between tissues
of differing transmembrane potential. As these studies all
represent the ischaemic region in a ‘rectangular’ fashion,
the sharp corners allow for these loops to form.

The motivation for this study is to see whether these cur-
rent loops are still apparent in ischaemic geometries which
do not possess as many sharp corners and also how this
affects the EPDs. For this study three different ischaemic
geometries were used: rectangular, cylindrical and semi-
elipsoidal. The rectangular ischaemic geometry was used
to validate the model against the analyical results by John-
ston et al. [2] while the other geometries represented de-
creasing presence of the sharp edges.

2. Methods

As this study focusses on the ST segment of the ECG,
(the isoelectric phase), the steady state bidomain equation
can be employed to find the resulting epicardial potential
distributions. It has the following form;

V- (M; + M)V, = —V - M;Vn (1)

where M; and M; are the intracellular and extracellular
conductivities and ¢. and ¢,, are the extracellular and
transmembrane potentials, respectively. A simple slab
model introduced by Johnston et al. [2] was used to rep-
resent a ventricle wall. This model considered a 1cm thick
insulated slab of ventricular tissue with infinite length and
width. The epicardium was situated at z = 0 and the endo-
cardium at z = 1. A volume of blood of infinite thickness
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then sat on top of the tissue. The potential in the blood was
governed by the equation

Vi, =0 )

The advantage of using such a model was that for a well
chosen size and shape of ischaemic tissue, the model could
be solved analytically with the help of fourier transforms.
However, as the inversion was done numerically, the di-
mensions of the slab in the z and y directions needed to be
finite. It was found by Johnston ef al. that a slab 16cm X
16cm was large enough in order for the potentials to tend
to zero at the boundaries. For a more complete description
on the slab model including descriptions of the boundary
conditions, refer to [2].

The conductivity values used in this study were the same
as [2] and were based on the values given by Clerc et al.
[9]: oL = 0.625 S/m, 0! = 0.236 S/m, ! = 0.174 S/m,
of = 0.0193 S/m. Also, linear fibre rotation was included
with a total rotation from the endocardium to epicardium
of 120°. These values were used so that the numerical
methods used in this study could be validated against the
previously found analytical solutions.

2.1. Rectangular ischaemic geometry

For the ischaemic region, the original slab model used a
rectangular geometry with a width of 4cm in the = and y di-
rections with the bottom in contact with the endocardium.
The ischaemic tissue was defined as having a transmem-
brane potential 30mV lower than that of normal tissue and
a smooth transition from ischaemic to healthy tissue was
employed. This was acheived by varying the transmem-
brane potential from OmV to -30mV across the border zone
according to the equation

Om(T,y,2) = =309 (2)P(y)P(1 — 2) 3)

In each spacial direction, the function ¥(p) is defined as
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where a,, is the half width of the ischaemic region in the re-
spective spatial direction, measured from the centre of the
border zone, and A, is a parameter to adjust the sharpness
of the transition. For this study, similar to previous work,
a value of 0.01 was chosen for A, in all directions.

2.2.  Cylindrical ischaemic geometry

The cylindrical ischaemic region was constructed to
have similar size and border zone properties as the rect-
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angular geometry. The cylinder was constructed with a ra-
dius of 2 and the equation for the transmembrane potential
was given by

Om(r,z) = =309 (r)P(1 — 2) %)
where r is in the radial direction and W is defined as in
equation (4). All other parameters were kept the same as

with the rectangular model to eliminate interference with
the results.

2.3. Semi-ellipsoidal ischaemic geometry

Like the cylindrical ischaemic zone, the ellipsoidal zone
was constructed to have a similar size as the rectangular
zone. It was constructed by taking the top hemisphere from
an oblate spheroid described by the equation

_1)2
@:1 (6)

where a, is the radius at z 1 and a, is the vertical,
conjugate radius. A value of 2 was chosen for a, to be
consistent with the previous ischaemic geometries. The
transmembrane potential was governed by the equation

{

where d is the perpendicular distance to the centre of the
border zone and \ is again a parameter which controls the
sharpness of the transition.
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3. Results and discussion

For the model using a rectangular ischaemic geometry,
the results show that at relatively low thicknesses of is-
chaemia (a, < 30%), the epicardial potential distribution
has a single depression located directly over the ischaemic
region. As the ischaemic thickness is increased, this single
depression begins to seperate into three depressions, one
remaining above the ischaemic region and two over op-
posing lateral borders. By the time the thickness reaches
50%, the three depressions become quite distinct, as can
be seen in figure 1. When the ischaemic thickness is in-
creased above 70%, elevation started to occur in the ar-
eas between depressions. These areas of elevation quickly
consume the region above the ischaemia and once the is-
chaemic thickness reach 85%, the central depression is al-
most completely replaced with elevation. For a better un-
derstanding of this process, it is benificial to look at the
the current paths inside the slab model. Figure 2 shows
the general behaviour of these current paths for medium
ischaemic thicknesses by taking a cross section at x = 0.
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Figure 1. Epicardial potential distriburion for the 3 different ischaemic geometries. The top row has an ischaemic thickness
of 10% and the bottom row 50%. The columns from left are the rectangular, cylindrical and ellipsoidal geometries. In each
plot, the thick line represents the zero potential (relative to the top right corner) and the thin lines represent negative

potentials.

What can be seen from this figure is that at low levels
of ischaemia, current loops are formed around the lateral
borders of the ischaemic region which rotate towards the
centre. This behaviour leads to a current sink in the cente
at the epicardium which gives the single depression found
in the results. As the ischaemic thickness is increased, a
seperate loop forms around the top edge which rotates in
the opposite direction to the more dominant loop around
the bottom edge. Once the level of ischaemia reaches 30%
the effects of the top loop reach the epicardium and this
is when the single depression begins to split up. This be-
haviour continues until the the effects of the top loop star
to overpower the bottom loop and this is when positive po-
tentials at the epicardium occur.

Comparing the epicardial distributions for the rectangu-
lar and cylindrical ischaemic models, there is not a sig-
nificant change in the behaviour. The cylindrical model
still forms a single depression which then splits into three
distinct depressions at approximately the same level of is-
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chaemia. Once the level of ischaemia reaches 70% eleva-
tion in the epicardial potentials again occurs which quickly
consumes the area above the ischaemic region. There are
slight differences between the two geometries, such as the
minimum potential in the cylindrical ischaemic model is
slightly higher than that of the rectangular model. Overall
however, the change in ischaemic shape has not influenced
the epicardial potential distributions significantly.

The current paths of the cylindrical ischaemic model
also show very similar behaviour to that of the rectangu-
lar ischaemic model, with the formation of current loops
around the top and bottom sharp edges of the ischaemic
zone. This, along with the previous results suggests that it
is likely to be the top edges which play the most significant
role in determining the epicardial potentials for these mod-
els. Comparing the epicardial distributions for the ellipsio-
dal ischaemic model to the previous two, immediately the
differences can be seen. At low levels of ischaemia, the be-
haviour is quite similar to the previous models, with a sin-
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Figure 2. Current paths for the rectangular (a), cylindrical (b) and ellipsiodal (c) geometries at 50% ischaemia. Constructed

by taking a cross section at z = 0.

gle depression occuring over the ischaemic region. As the
ischaemic thickness is increased however, the single de-
pression splits into only two depressions instead of three
and again, once the thickness is at 50%, the two depres-
sions become quite distinct. At high levels of ischaemia,
elevation starts to occur in the area above the ischaemic
region which again quickly consumes the entire area. An
interesting difference in the ellipsoidal ischaemic model is
that that the elevation begins in the centre and moves out-
ward instead of inward as with the previous models. This
means that the area of maximum elevation is at the cen-
tre of the ischaemic region instead of on the inside of the
ischaemic borders.

Looking at the current paths for the ellipsiodal is-
chaemic model helps to understand the different be-
haviours noticed. For low levels of ischaemia, the current
paths look similar to the previous models, with loops form-
ing around the edges of the ischaemic region. As the is-
chaemic thickness increases however, the secondary loops
found with the previous models no longer form as there are
no top edges. The edges of the ischaemic region at the en-
docardium now act like a current sink, which leads to the
two depressions over the edges of the ischaemic region.
Once the top of the ischaemic region gets close enough to
the epicardium (70%), elevation over the centre occurs due
to the current moving outward from the centre.

4. Conclusions

The results from this study show that the shape of the
ischaemic region has a significant effect on the potential
distributions observed at the epicardium. Using three sim-
ple geometries for the ischaemic region, it was found that
ellipsoidal geometry resulted in significantly different po-
tential distributions on the epicardium for medium thick-
ness ischaemia. This suggests that knowledge of the shape
of the ischaemic region is important in understanding the
relationship between epicardial potential distributions and
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ischaemia.
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