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Abstract

This paper presents a method to identify the cardiovas-

cular baroreflex parameters that are useful for probing

homeostatic stability. The work is built upon a physiology-

based model of the closed-loop cardiovascular and barore-

flex feedback system describing the regulation of heart

rate and blood pressure. Parametric sensitivity analysis is

conducted on the model to classify the model parameters

into high-sensitivity, low-sensitivity, and invariant groups

based on their relative impacts on the system outputs. The

baroreflex identification is formulated as a nonlinear opti-

mization problem in which only high-sensitivity model pa-

rameters are identified whereas low-sensitivity and invari-

ant parameters are fixed at their typical values. The ad-

vantage of the method is its computational efficiency with-

out significant compromise in performance and accuracy.

The method was applied to the experimental data of 10 in-

dividuals in the MIMIC Database in the PhysioBank. The

promising results suggest potential of the proposed method

in probing homeostasis based on the estimates of sympa-

thetic and parasympathetic tones.

1. Introduction

Homeostasis is the ability of a system to maintain its sta-

bility against varying external stimulation [1]. In the car-

diovascular system, multiple short-term and long-term reg-

ulatory mechanisms have evolved to guarantee adequate

blood perfusion to organs by compensating for diverse

physiologic changes due to external stimulations [2–5].

Short-term blood pressure regulation (STBPR) is an im-

portant homeostatic mechanism for controlling blood pres-

sure (BP) in the human body by maintaining BP at a de-

sired set point using a set of sensors and effectors [6]. In

STBPR, perturbations in BP which are sensed by the arte-

rial baroreceptors, are processed by the autonomic nervous

system (ANS) to send control commands to the effectors

such as sympathetic and parasympathetic reflexes on heart

rate (HR) and total peripheral resistance (TPR) to regulate

HR and BP [2].

The characteristics of STBPR such as sympathetic and

parasympathetic tones vary in time to maintain BP in an

appropriate range [7, 8]. Besides, its response character-

istics also play an important role in deducing the ANS

activity. In particular, it is well known [9] that inappro-

priate baroreflex response to external stimulation such as

stressful tasks may result in oscillation and even instabil-

ity of HR and BP regulation in the closed-loop cardiovas-

cular and baroreflex systems. Therefore, identification of

STBPR characteristics is very useful in probing the stabil-

ity and performance of homeostasis in the context of the

cardiovascular system.

The objective of this study is to develop a computation-

ally efficient method for characterizing STBPR-related pa-

rameters using routine measurements: HR, BP, and car-

diac output (CO). The method is based on a physiology-

based model of the closed-loop cardiovascular and barore-

flex feedback systems. Instead of attempting to charac-

terize overwhelming number of parameters in the model,

this paper proposes to identify only high-sensitivity model

parameters whereas low-sensitivity and invariant (constant

within individual) parameters are fixed at their typical val-

ues. High-sensitivity parameters are identified by applying

a parametric sensitivity analysis to the model. Represen-

tative results from idealized simulations and experimental

studies are presented and discussed.

2. Methods

2.1. Model

A variety of cardiovascular and baroreflex models with

different levels of complexity have been developed [7–9].

Based on our compromise between a model’s physiologic

transparency (i.e. consistency with brain-cardio physiol-

ogy) and its simplicity for identification purposes, we used

a physiology-based model proposed by Fowler et al. [10].

The model consists of two differential equations, each of
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Table 1. Parameters in the Fowler’s model.

Parameter Definition Value

Ca arterial compliance 1.55 mlmmHg−1

R0
a min arteriole resistance 0.6 mmHgsml−1

∆V stroke volume 50 ml

H0 intrinsic heart rate 100 min−1

τ sympathetic delay 3 s

VH vagal tone 1.17 s−2

βH sympathetic control of HR 0.84 s−2

α sympathetic effect on Ra 1.3

γ vagal damping of βH 0.2

δH relaxation time 1.7 s−1

which describing the dynamics of HR and BP regulation:

˙H(t) =
βHTs

1 + γ Tp

− VHTp + δH

(

H0 − H(t)
)

(1)

˙P (t) = −
P (t)

R0
a(1 + αTs)Ca

+
H(t)∆V

Ca

, (2)

where Ts = g(p(t− τ)) is the sympathetic tone, and Tp =
1− g(p(t)) is the parasympathetic tone with g(p) = 1

1+p4 .

The definitions of the parameters in (1)-(2) are summarized

in Table 1 together with their typical values. It has been

shown that the baroreflex characteristics are very well rep-

resented by a sigmoidal function [9]. Therefore, the Hill

equation g(P ) in (1)-(2) was replaced by 1 − f(p) in an

effort to better describe the behavior of sympathetic and

parasympathetic tones. f(p) is defined as follows:

f(p) = Tmin +
Tmax − Tmin

1 + e−αsp(P−Psp)
50 ≤ P ≤ 200. (3)

where Tmin and Tmax are minimum and maximum values

of inter-beat interval (H−1), Psp the BP setpoint, and αsp

the saturation constant.

2.2. Parametric sensitivity analysis

Although relatively simple, the model (1)-(2) still in-

cludes 12 parameters, and it may not be easy to fully char-

acterize the model based only on HR, BP, and CO measure-

ments. Our strategy is to identify those parameters which

have significant impact on the system response while fix-

ing the remaining low-sensitivity parameters at their re-

spective typical values. To this aim, a parametric sensitiv-

ity analysis was conducted on the model (1)-(2).

Since the system has two outputs (HR and BP), the para-

metric sensitivity has to be evaluated for both HR and BP.

Besides, due to the nonlinearity of the model, traditional

frequency-domain sensitivity functions for linear systems

cannot be used. To resolve these difficulties, the following

Figure 1. Typical Parametric Sensitivity function Sj(t) for

a normal individual.

time-domain sensitivity function was devised:

S(ti, µj) =
SH(ti, µj) + SP (ti, µj)

2
(4)

where S(ti, µj) is the total sensitivity at time ti due to per-

turbation of parameter µj . Sensitivity functions for HR

and BP are defined as:

SH(ti, µj) =
H(ti, µj) − H(ti, µj,0)

µj − µj,0
×

µj

H(ti, µj)
(5)

SP (ti, µj) =
P (ti, µj) − P (ti, µj,0)

µj − µj,0
×

µj

P (ti, µj)
(6)

where H and P denote HR and BP, respectively. These

quantities represent the percent change in output at time

ti due to percent perturbation of parameter µj . To make

the sensitivity metric robust against variation in the ampli-

tude of parametric perturbations, (4) was further processed

using +/- 50% (1 % increment) parametric perturbation to

yield Sj(t):

Sj(t) =

√

√

√

√

√

3

2
µj,0
∑

µj=
1

2
µj,0

S2 (ti, µj) (7)

Fig. 1 shows an example of Sj(t) for a normal individual

with typical parameter values (Table 1). Finally, the met-

ric Sj in (8) was obtained to aggregate different sensitiv-

ity values in time into a scalar metric, based on which the

overall sensitivity of a particular parameter on the system

response can be evaluated:

Sj =

√

√

√

√

√

3

2
µj,0
∑

µj=
1

2
µj,0

tfinal
∑

tinitial

S2(ti, µj) (8)

The parameters were classified into high-sensitivity, low-

sensitivity, and invariant groups based on Sj .
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2.3. Idealized simulation

To assess the validity of our reduced-order identification

strategy, a set of 500 Monte-Carlo identifications were run

on a simulation model of (1)-(2). In each identification run,

only the high-sensitivity parameters were identified with

the low-sensitivity and invariant parameters fixed at their

typical values, whereas all the parameters in the simulation

model were randomly assigned in a neighborhood of their

typical values to replicate realistic inter-subject variabil-

ity. The identification was conducted using HR, BP and

CO measurements. The time series sequences of HR, BP,

and CO data were divided into 30s-long segments, each

of which was used to identify the high-sensitivity param-

eters representative of the associated data segment using

the MATLAB Optimization Toolbox. The sum of abso-

lute normalized errors of HR and BP (9) was used as cost

function for optimization:

J =
EP + EH

2
; EX =

n
∑

t=0

∣

∣

∣

∣

Xp(t) − Xm(t)

Xm(t)

∣

∣

∣

∣

(9)

where Xm and Xp are measured and predicted outputs

(X = H,P ). The distribution of the resulting 500 sets

of parameter estimates was analyzed with respect to their

true counterparts using the index (10) :

IEval
µj

=
µEst

j

µNom
j

, 1 ≤ j ≤ 12 (10)

2.4. Identification using experimental data

To assess the feasibility of the proposed method of car-

diovascular baroreflex identification, it was applied to ex-

perimental data from 10 individuals. The data were taken

from the MIMIC Database (PhysioBank), which include

continuous recordings of HR, BP and CO at 1Hz. The

low-sensitivity and invariant parameters were fixed at their

typical values (Table 1). The parameters were identified in

the same fashion as described for idealized simulations.

3. Results

The sensitivity metric Sj’s of the model parameters are

illustrated in Fig. 2, based on which the parameters were

classified into 5 high-sensitivity, 5 low-sensitivity, and 2

invariant groups (Table 2). Fig. 3 shows the distribu-

tion of index (10) for the high-sensitivity parameters ob-

tained from the 500 Monte-Carlo identification trials. Fig.

4 presents a representative result obtained from applying

the method to the experimental data.

Figure 2. Typical parametric sensitivity function Sj for a

normal individual.

Table 2. Sensitivity-based parameter classification.

High-sensitivity Low-sensitivity Invariant

Psp γ H0

∆V Ca R0
a

VH τ

βH αsp

α δH

4. Discussion and conclusions

4.1. Sensitivity analysis

We classified Psp, ∆V , VH , βH , and α as high-

sensitivity parameters, and γ, Ca, τ , αsp and δH as low-

sensitivity parameters. H0 and R0
a were classified into in-

variant parameters since they are assumed to be constant in

an individual, although their sensitivity values are signif-

icant. Essentially, the fact that VH and βH are included

in the high-sensitivity parameters supports our strategy

of reduced-order identification for characterizing sympa-

thetic and parasympathetic tones in STBPR.

4.2. Idealized simulation

The distributions of the high-sensitivity parameters are

mostly centered at 1 (Fig.3), suggesting that accurate iden-

tification of high-sensitivity parameters is possible even if

the low-sensitivity and invariant parameters are fixed at

their typical values. The same 500 Monte-Carlo identifi-

cation runs without CO yielded acceptable results, but not

as good as Fig. 3. This suggests that the proposed method

will benefit from non-invasive measurements of CO.

4.3. Experimental results

Due to unavailability of true parameters, our focus in

interpreting the experimental results was on whether the

identified parameters are reasonable based on a priori
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Figure 3. Distribution of identified parameters (normal-

ized by true values).

(a)Measured BP, HR, and CO

(b)Estimated parameters variation versus time

Figure 4. A representative result from a MIMIC data.

knowledge on the behavior of the STBPRS. Consider Fig.

4. Fist, abrupt BP decrease at t = 500s (Fig. 4(a)) results

in increase of βH and α as well as decrease of VH (Fig.

4(b)), and BP is eventually recovered by increase of HR

and TPR. Similar behavior can be observed at t = 750s.

Besides, sudden drop of CO at t = 1720s is compensated

by increase of α, by virtue of which HR and BP are sta-

bly maintained. During t = 2700 − 2850s, VH initially

responds (Fig. 4(b)) to compensate for BP increase (Fig.

4(a)). However, the system decides to change its state to a

new equilibrium at t = 3250s and afterwards (Fig. 4(a);

note that this change is beyond usual BP changes observed

for t < 2700s), for which Psp is increased and the asso-

ciated re-adjustments of βH , VH and α follows (Fig.4(b)).

Overall, the result in Fig. 4 suggests, to large extent, the

physiologic relevance of the identified high-sensitivity pa-

rameters. Similar interpretation could be made for the re-

maining data to which the method was applied.

In conclusion, this paper presented the feasibility and

potential of a computationally efficient method for charac-

terizing STBPRS. Future work will be the application of

this method for probing homeostatic stability.
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