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Abstract 

In this paper we present methodology used in a non-

invasive, easy-to-use and low-cost monitoring system for 

nightlong human sleep quantification. Our system uses 

simultaneous measurement of three different signals 

representing the activity of the human body: infrared 

video-recorded subject motion, audio-recorded acoustic 

effects and the three-leads electrocardiogram. Signal-

specific interpretation methods yield parameters selected 

as most discriminative for the sleep quality, synchronized 

and combined as a sleep record.  

In the experimental stage the nightlong sleep was 

supervised by the reference EEG recordings and 

particular components of the sleep record were 

correlated to the presence of delta wave representing 

deep sleep. Significant correlation values in most subjects 

allow to validate the proposed sleep record as 

comparable to the standard polysomnogram.   

 

1. Introduction 

Average human spends one third of his live in sleep. 

This justifies the investigation of the sleep quality as an 

important component of the quality of life. Unfortunately, 

sleep studies today require specialized equipment and 

qualified personnel, therefore cannot be easily transferred 

to the home care conditions.  

A pursuit for an intelligent health surveillance 

infrastructure embedded in the subject’s premise 

motivated us for investigation of possible integration of 

cheap off-shelf components to a sleep-quality assessment 

system. The research presented in this paper aims at:  

- optimal selection of the system components, 

- estimation of convergence of sleep descriptions to 

results from clinical methods. 

 

2. Material and methods 

The system is targeted to healthy and diseased users as 

well, therefore in our studies we investigated selected 

modalities of nightlong sleep recorded from seven healthy 

volunteers (three females and four males, aged 21-59). 

Characteristic pattern of each of the acquired signals and 

video frames were analyzed by means of dedicated 

software. Final conclusions about the state and activity of 

every investigated patient are presented by setting-up and 

comparison specific parameters: ECG-derived HRV and 

breathing parameters, snoring parameters and body 

motion index referenced to the presence of delta waves, 

representing the deep sleep in the EEG. 

 

2.1. Recording equipment 

For basic electrocardiographic recording three-leads 

(III, V1 and V5) battery operated personal recorder with 

12-bit 128 sps was used (Aspekt 702, Aspel).  

 Brain electrical activity data were acquired from C4-

A1 (or C3-A2 backup) derivations according to the 10-20 

system, two mastoid electrodes (A1 and A2) in reference 

and a ground electrode placed between Fp1 and Fp2. The 

maximum value of skin resistance was 5 kΩ. An EEG 

amplifier (ISO1032, Braintronics) uses a 16 bit analog-to-

digital converter (500 sps). The acquired signal was 

filtered with a bandpass filter (0.3-35 Hz) and a power 

line frequency (50 Hz) notch filter accordingly to the 

desirable digital specifications in [1]). The baseline (mean 

value) was subtracted from the signal and then in order to 

reduce calculation time quadruple resampling to 125 Hz 

was applied. 

Small microphone attached to the patient chin 

measured acoustic effects recorded with the sample rate 

set to 44100 Hz in Cool Edit Pro software.  

Nightly video motion measurements were possible due 

to setting up black/white CCD (Charge Coupled Device) 

camera with additional kit of nine infrared diodes which 

role was to illuminate the research area.   

 

2.2. Heart rate variability and respiratory 

wave  

The ECG recordings were used to acquire 

electrocardiogram-derived respiratory (EDR) and the 

pattern of heart rate variability (HRV) in dependence of 

time domain. The typical tachogram and its main 

parameters were calculated: RMSSD, SDANN. The 
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square root of  the mean squared differences of successive 

NN intervals (RMSSD) calculated over 2.5 min and the 

standard deviation of the average NN interval calculated 

over ten minutes periods (SDANN) represented short-

time and long-time variability respectively. 

The respiratory signal (EDR) was calculated with 

cubic splines within the detected QRS area, based on RS 

amplitude, measured as the difference between the 

minimum of the S and maximum of the R waves (fig. 1): 

 amp(i) = Ramp(i) − Samp(i), i=1, 2, . . . , n. [2]. 
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Figure 1. a) ECG removal of baseline b) RS amplitude c) 

respiratory signal from a subject breathing at 26 bpm. 

 

2.3.  Brain waves decomposition 

Analysis of the electroencephalographic signal 

consisted in basic brain waves decomposition into 

stochastic time-frequency dictionaries of Gabor functions 

},...,,{ 21 ngggG = , where 1=ig [3]. For that aim 

free MP4 application proposed by Ircha and Durka [4] 

was used. This software is based on the iterative method 

of Matching Pursuit (MP) [5]. First, the waveform ogγ  

which creates a maximal scalar product with the signal, is 

selected from the dictionary. Thus the fitting to the signal 

is most significant. In each successive step, the analytic 

function ngγ  (pattern) is made running along the 

analyzed signal xR
n

, yielding as a result the correlation 

and residual functions. The best matching pattern and the 

corresponding time distribution of pattern-to-signal 

likelihood are adopted as decomposition coefficients, 

while the residual function is subject for further 

decomposition. After n steps of decomposition, the signal 

is expressed as a convolution of n analytic signals 

weighted by the (time-pattern) decomposition coefficients 

and the residual signal not sufficiently well fitting to any 

of the dictionary component. These operations are 

presented below by the following set of equations [6]:   
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When the particular time-frequency waveforms have been 

fitted to the analyzed signal, the procedure is convergent 

to x:  
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Waveforms )(tgγ  are generated by translating (u), 

scaling (s) and modulating window function g(t): 
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where: 

),( φγK  – normalizing factor such that 

1),( =φγg  

φ  – phase   

After the MP decomposition, each sample of the EEG 

signal in a given time period of 30 seconds was verified 

for matching the time range of any atoms corresponding 

to exact wave. Then all samples which satisfied this 

criterion were totalized and the percentage contributions 

depending on time were prepared for each wave. 

 

2.4. Acoustic effects analysis 

Snoring is produced in the vocal tract, similarly to 

speech. Thanks to that analogy, existing techniques for 

speech analysis have been applied to evaluate snoring 

sounds.  

The transformation of data from the time domain to the 

frequency domain was performed by the Short-Time 

Fourier transform algorithm implemented in the Matlab 

programming environment. Sampling frequency of the 

analog-to-digital converter (44100 Hz) determines the 

maximum time duration of the sample. Frequency range 

of 12 kHz can completely describe the snoring 

phenomenon. Snoring sounds were analyzed using the 

short-time Fourier transform (STFT) to determine the 

frequency and content of local sections of the samples. It 

can be described using the following equation [7]: 

a) 

b) 

c) 
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where w(t) is the window function, commonly a 

Hamming window (width  N = 353 samples),  centered 

around zero, and x(t) is the signal to be transformed. 

Essentially X(τ, f) is the Fourier Transform of x(t)⋅w(t-τ), a 

complex function representing the phase and magnitude 

of the signal over time and frequency.  

Time variation of the frequency spectrum is calculated 

by dividing the analyzed signal into short, overlapping 

segments. Signal in 10 ms segments becomes stationary, 

so short time Fourier transform can be performed. After 

raising the resulting spectrum to the second power these 

segments can be combined. Time variation of the 

frequency spectrum is defined as square module of STFT 

[4, 5]. It can be described using the following equation: 
2

),(),( ftSTFTftG xx ==  

The STFT is a complete description of the signal and it is 

an important procedure for further analysis.  

 

2.5. Motion index 

Quantitative evaluation of the movements activity 

during nightlong sleep were performed by means of 

processing the absolute value of difference images from 

the consecutive video frames at 1 sec. intervals in respect 

to the changeable in time background signal [8].  

Firstly, the relationship between all pixels mean 

brightness sum (y) in dependence of sleep time for 

obtained difference images was calculated. This operation 

yields supportive signal (ss) representing the noise level 

by local minima of the signal y in time window 2d: 

)):(min()( didiyiss +−=  

To estimate movements activity of the human body the 

percentage contribution of pixels with ss overthreshold 

brightness was calculated over 1 s periods. Motion index 

(MI) defined in that way reveals both the value and the 

frequency of the patient movements during sleep. 

 

3. Results 

Complete quantitative analysis of nightlong sleep was 

made for all volunteers participated in this study. In order 

to characterize the sleep during its various stages, based 

on ECG, motion, respiration and acoustic methods we 

calculated several specific parameters: RMSSD, SDANN, 

motion index MI, snoring index SI and breathing index 

BI. These parameters were calculated for periods of at 

least 20 minutes during deep sleep with presence of delta 

waves (tab. 1) and for periods after deep sleep stage 

determined by absence of delta waves. Motion index was 

integrated whereas other parameters were averaged in 

those chosen intervals for each subject.  

Table 1. Sleep quantitative analysis during deep sleep 

(delta waves).  

 

Parameter/ 

Patient 

1 2 3 4 5 6 7 

RMSSD 52.2 173.0 12 10.3 122.3 88.6 35.7 

Std RMSSD 12.6 44.6 1.5 0.7 16.7 4.8 11.1 

SDANN 14.2 13.7 7.0 2.6 10.2 9.7 3.3 
Std SDANN 4.7 7.2 9.2 3.6 14.5 15.6 1.4 

MI 8.5 0 0.9 3.2 6.9 0 0 
Snoring 

events/min 

none none 16, 

more 

than 

65dB 

17, 

50-

65dB 

none none none 

Breathing 

events/min 

19 15 16 17 20 18 19 

 

Joint analysis of different modalities of biosignals 

recorded during the whole sleep period yields several 

observations and statements. Figure 2 presents the 

relation of ECG-derived short-time HRV parameter 

RMSSD and motion index. Figure 3 displays the example 

of relation of delta waves contribution percentage and 

motion index MI during nightlong sleep. Figure 4 

presents the respiratory signal calculated with use of two 

methods: acoustic analysis and EDR. Comparison of the 

breath signal calculated by these methods indicates their 

equivalence in the assessment of breath during sleep.   
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Figure 2. Presentation of RMSSD and MI parameters in 

dependence of whole sleep time. 
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Figure 3. Correlation of delta waves and MI value during 

the whole sleep time. 

 
Figure 4. Correlation of sound-derived respiratory and 

EDR signals from a subject breathing at 18 bpm during 

deep sleep stage (delta waves). 

 

4. Discussion 

In the study several methods were presented and few 

basic parameters sufficient to sleep evaluation were 

proposed. Analysis of RMSSD and SDANN during deep 

sleep and non-delta waves episodes revealed inter-subject 

variability as well as variability in time of the same 

patient. Significant negative correlation between body 

movements amount and percentage contribution of delta 

waves could be seen.  

Acoustic methods and EDR are very important in 

identifying sleep apnea and other abnormalities during 

sleep. Thanks to a complete acoustic analysis we were 

able to observe that during the deep stages of sleep 

breathing is steadier than in any other period.    

Quantitative sleep analysis shows significantly lower 

RMSDD parameter values during and after the deep sleep 

stages for subjects presenting measureable snoring events.  

In authors’ opinion the proposed multimodal home-

care nightlong sleep analysis system is not equivalent to 

the standard polysomnogram, however is sufficiently 

accurate for identification of human state and evaluation 

of nightlong sleep quality. 
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