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Abstract—This paper is concerned with the computational
efficiency of clustering algorithms when the data set to be clus-
tered is described by a proximity matrix only (relational data)
and the number of clusters must be automatically estimated
from such data. Two relational versions of an evolutionary
algorithm for clustering are derived and compared against
two systematic (repetitive) approaches that can also be used
to automatically estimate the number of clusters in relational
data. Exhaustive experiments involving six artificial and two
real data sets are reported and analyzed.

I. INTRODUCTION

There exist at least two elementary ways in which a data
set is defined for clustering tasks. The first one takes place
when the data set O = {o1, o2, . . . , on}, composed of n
data objects, is described by means of a set of attribute
vectors X = {x1, x2, . . . , xn}, where xi is the attribute
vector of the ith data object, oi. Alternatively, the data set O
can be described only by similarity or dissimilarity relations
between its objects; for instance, through a relational matrix
R = [rij ]n×n, in which rij is the value of similarity
or dissimilarity between objects oi and oj [1]. In this
case, the data are referred to as relational data and the
clustering approaches capable of processing them are so-
called relational clustering algorithms. It turns out that these
relational algorithms are of great importance to private data
since they do not need access to the object attributes. For
instance, a data set containing information about a bank’s
clients can be shared through a relational matrix, which
hides all the information except the (dis)similarity between
the clients. Moreover, there are several fields of knowledge,
such as numerical taxonomy, seismic engineering, expert
systems design, document retrieval, management, industrial
engineering, and social sciences, in which relational data is
commonly and naturally encountered [2], [3]. For instance,
a relational matrix whose values represent the subjective
dissimilarities between 11 sciences is reported in [4], which
also describes an example involving the dissimilarities be-
tween 12 countries assigned subjectively by a group of po-
litical science students. Another relevant aspect of relational
algorithms stems from applications involving mixed data
types (e.g., categorical and numerical). By means of suitable
(dis)similarity functions, a data set with mixed data types
can be described by a relational matrix and, then, clustered
normally using a relational clustering algorithm. Moreover,

there is a well-established approach for cluster ensemble
that consists of the mapping of a set of partitions into a
relational matrix (named co-association matrix) followed by
the application of a relational algorithm to this matrix [5].

When a partitional clustering algorithm [6], [7] is applied
to a data set − no matter whether it is relational or not −
the result is a partition C = {C1, C2, . . . , Ck} of the data
into k clusters, such that:

k⋃
i=1

Ci = O

Ci 6= ∅ for all i ∈ {1, . . . , k}

Ci ∩ Cj = ∅ for all i, j ∈ {1, . . . , k} : i 6= j

(1)

where Ci stands for the ith cluster. The estimation of
an appropriate value for k is a key problem in practical
clustering applications. A widely known and simple ap-
proach to tackle this problem consists of using a systematic
(repetitive) procedure to run a given clustering algorithm
multiple times for different numbers of clusters and, then,
selecting the best partition according to a clustering validity
criterion. Another major approach is to use some sort of
meta-heuristic, such as evolutionary algorithms, specially
designed to perform a wiser, guided search through the
space of candidate partitions with variable k [8], [9]. In
particular, the Evolutionary Algorithm for Clustering (EAC)
proposed in [10] was designed to evolve partitions with
variable k by eliminating, splitting, and merging clusters
that are refined by the classic k-means algorithm. EAC
has been shown − from a statistical perspective − to be
more efficient than systematic (repetitive) approaches based
on multiple runs of k-means when the number of clusters
in a data set is unknown [10], [11]. In [12], the authors
showed that the computational efficiency of EAC could be
further improved with the use of guided mutation operators
with self-adjusting application rates, among other additional
features. The incorporation of those features gave rise to the
Fast Evolutionary Algorithm for Clustering (F-EAC), which
is of foremost interest in the present paper.

In this paper, we propose two modified versions of F-EAC
for clustering of relational data. These modified versions
are derived by rewriting the mutation operators, the fitness
function, and the local search procedure of the original F-
EAC so that they all become relational. The computational
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efficiency of the proposed relational variants of F-EAC is
experimentally assessed in eight data sets and the results are
statistically compared against those obtained by repetitive
procedures.

The remainder of this paper is organized as follows.
Section II describes the novel evolutionary algorithms for
relational clustering. Section III presents an extensive col-
lection of experiments in which the proposed algorithms
are tested against traditional repetitive procedures. Finally,
Section IV addresses the conclusions.

II. FAST EVOLUTIONARY ALGORITHM FOR RELATIONAL
CLUSTERING (F-EARC)

Two relational variants of the original F-EAC are intro-
duced in this section. They differ from one another by the
use of distinct local search procedures: Basic k-Medoids
(BKM)1 and Relational Hard c-Means (RHCM) [2]. The
variant that uses BKM will be hereafter named F-EARC-
BKM, while the one that uses RHCM will be termed F-
EARC-RHCM. In order to refer to the relational variants
in general, no matter the local search procedure in use, the
acronym F-EARC will be adopted. Algorithm 1 depicts the
general outline of F-EARC, whose steps are described in the
following sections. The parameters of the algorithm are: (i)
the size of the population, m; and (ii) the maximum number
of iterations, t, that can be performed in a single application
of the local search procedure (BKM or RHCM − Step 3).

Algorithm 1 F-EARC.
1: Randomly initialize a population of m genotypes encod-

ing clustering partitions (Sections II-A and II-B);
2: while Stopping criterion is not satisfied do
3: Apply BKM or RHCM to every individual of the

population (Section II-C);
4: Evaluate the fitness of every individual by means of

a clustering validity criterion suitable for relational
clustering (e.g., the Silhouette index [4]);

5: Apply rank-based linearization [13] to the fitness
values;

6: Select individuals (Section II-E);
7: Apply the relational mutation operators MO1 e MO2

(Section II-D) to the selected individuals, according
to a guided application policy (Section II-E);

8: Replace the old population with the new one;
9: end while

1BKM is essentially the classic k-means algorithm with centroids sub-
stituted by representative objects (medoids) that are computed so as to
minimize the sum of distances between them and the objects of the
corresponding clusters; i.e., the object selected as medoid of a cluster Ci

is such that õi = arg min
õ∈Ci

P
o∈Ci

d(o, õ), where d is a distance measure.

A. Genotype encoding

The genotypes of F-EARC encode cluster prototypes. In
the case of F-EARC-BKM, the prototypes are medoids,
whereas in the case of F-EARC-RHCM, the prototypes are
relational centroids (defined further in Section II-B). Since
the mutation operators act directly on the logic level of the
individuals (phenotype), no matter the peculiarities adopted
at the implementation level, the detailing of the genotype
encoding is unnecessary; it suffices to notice that the proto-
types must be stored in the genotypes. From the prototypes,
the corresponding clustering partitions are restored simply
by assigning the data objects to the nearest prototypes.

B. Settings and initial population

In this work, the prototypes of the initial population are
generated according to a typical approach [14], [15], [16],
[17], [18]. For each individual, a value k is randomly drawn
from the interval [2,

√
n] (whose upper limit is a commonly

used rule of thumb [19], [20]), then k objects õ1, . . . , õk are
randomly drawn from the data set, without reposition. In
the case of F-EARC-BKM, these objects are the prototypes
(medoids) to be stored in the respective genotype. In the
case of F-EARC-RHCM, these objects are used to derive
the prototypes (relational centroids). Specifically, the drawn
objects are used to obtain a partition C = {C1, . . . , Ck} that
satisfies the constraints in (1), according to the following
rule:

ol ∈ Ci iff i = arg min
j

d(ol, õj), (2)

where l = 1, · · · , n, i = 1, · · · , k, and d(·, ·) stands for
the dissimilarity (distance) between two objects; ties are
arbitrarily broken. Once partition C has been recovered, k
relational centroids (cluster prototypes for F-EARC-RHCM)
can be computed, as follows [2]:

vi = (ui1, ui2, . . . , uin)T /
n∑

l=1

uil, (3)

where uil = 1 if the lth data object belongs to the ith cluster
(ol ∈ Ci) and uil = 0 otherwise (ol /∈ Ci). It is worth
noticing that vi, which is the relational centroid of cluster Ci,
is an n-dimensional vector, where n is the number of objects
in the data set. From these relational centroids, the distances
between objects and centroids, which are required by the
RHCM algorithm, can be computed using the (Euclidean)
relational matrix of the data to be clustered [2].

C. Local search

F-EARC, like all the other variants of the Evolutionary
Algorithm for Clustering (EAC) [10], [12], [21], [11], has
a local search procedure by which a clustering algorithm is
applied to the individuals so as to refine the corresponding
partitions, thus speeding up the global search performed

1457



by the evolutionary operators. F-EARC-BKM and F-EARC-
RHCM use BKM and RHCM as their local search proce-
dures, respectively. These procedures, in turn, are endowed
with two stopping criteria: (i) all the cluster prototypes
have converged; or (ii) a maximum number of iterations
(t) have been completed. Since the evolutionary search
performed by F-EARC provides a cumulative refinement of
the solutions in the course of generations, it is expected
that a few iterations of BKM or RHCM will be required
to make F-EARC both fast and effective. Such a sort of
hypothesis has been reinforced in [22] by means of an in-
depth experimental analysis of the effect of the number of
local search iterations performed by an EAC-like algorithm.
These experiments and previous experience indicate that this
family of algorithms is quite robust to the choice of this
parameter and also suggest that values for t not greater
than t = 5 will usually suffice to provide accurate results
with reduced computational requirements. Indeed, BKM
and RHCM are relational variants of the classic k-means
algorithm. Empirical evidence suggests that five or fewer
iterations are usually enough for k-means to find satisfactory
solutions [23], even when running in a standalone environ-
ment (without the support of an evolutionary guidance, for
instance).

D. Mutation Operators

F-EARC is equipped with two mutation operators capable
of dealing with relational data sets (Step 7 of Algorithm
1). The first operator (MO1) is responsible for the removal
of a subset of selected clusters from a given individual
and, accordingly, for reducing the number of clusters of
the corresponding partition. MO1 acts by removing − from
the respective individual − the prototypes of the selected
clusters. At the subsequent generation, when the mutated
individual is subject to the local search procedure (Step
3 of Algorithm 1), the objects from the removed clusters
are naturally reallocated to the nearest remaining clusters.
The selection of clusters to be removed takes place prob-
abilistically, taking into account a measure of quality of
the individual clusters. Specifically, higher quality clusters
are more likely to be preserved than lower quality ones.
To that end, the value −S(Ci) is assigned to cluster Ci,
for all i ∈ {1, . . . , k}, where S(·) is the Silhouette index
[4] computed exclusively with respect to those objects
belonging to cluster Ci. These values undergo a rank-based
linearization [13] and are then used to select those clusters
to be removed. Particularly, the well-known roulette wheel
strategy [24] (without reposition) is adopted. MO1’s steps
are presented in Algorithm 2.

The second mutation operator (MO2) is responsible for
splitting a subset of clusters selected from a given individual
to be mutated and, accordingly, increasing the number
of clusters of the corresponding partition. MO2 acts by
replacing the prototype of each selected cluster with a pair

Algorithm 2 Mutation Operator 1 (MO1).
1: Let g be a genotype to be mutated and k be the number

of clusters in the data partition C encoded into g;
2: if k > 2 then
3: for i = 1, . . . , k do
4: Calculate the value of the Silhouette index, S(Ci),

associated with cluster Ci;
5: end for
6: Apply rank-based linearization to the values

−S(C1), . . . ,−S(Ck) so that lower values are
assigned to better clusters;

7: Randomly draw a number h ∈ {1, . . . , k − 2};
8: for i = 1, . . . , h do
9: Draw a cluster Cs from C using the roulette

wheel strategy, without reposition, according to the
linearized values assigned to clusters C1, · · · , Ck in
Step 6;

10: Update g by removing the prototype associated
with cluster Cs;

11: end for
12: end if

of new ones. Let Cs be a cluster selected for splitting.
The prototype of Cs is removed and two objects of Cs

(o
′

s and o
′′

s ) are chosen. The first object, o
′

s, is randomly
chosen from Cs. The second object, o

′′

s , is the object of
Cs farthest from o

′

s. In the case of F-EARC-BKM, o
′

s and
o
′′

s are stored as a new pair of prototypes (medoids), in
place of the one that has been removed. In the case of F-
EARC-RHCM, it is necessary to recover two clusters from
o
′

s and o
′′

s before obtaining the new pair of prototypes (as
relational centroids). To that end, the objects of Cs closer
to o‘s form cluster C

′

s, whereas those objects of Cs closer
to o

′′

s form cluster C
′′

s . The corresponding pair of relational
centroids (prototypes) can thus be computed using Equation
(3). The selection of the clusters to be split follows precisely
the same probabilistic procedure used by the first mutation
operator (MO1). For the sake of compactness, a step-by-step
description of MO2 will be omitted here.

E. Selection and guided application of the mutation opera-
tors

F-EARC, like EAC, uses by default the well-known
roulette wheel strategy as well as unitary elitism as its
selection mechanisms2 [24]. In this case, the fittest individual
of the current population (of size m) is preserved to be
directly conveyed to the next generation (unitary elitism).
The remaining m − 1 individuals that will form the next
generation are drawn from the current population by means
of the roulette wheel strategy (proportional selection), with

2Any other alternative selection operator can be employed, if desired.
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reposition. After selection, the mutation operators MO1 and
MO2 are applied to these m− 1 selected individuals.

In the present paper, the application of the mutation oper-
ators follows a novel (individual-oriented) guidance policy:
if the fitness of the ith individual has increased from the
last generation to the current one, then apply once again the
same mutation operator that was applied to that individual
in the last generation. Contrarily, if the fitness of the ith
individual has decreased, then change the mutation operator.
Finally, if the ith individual has not undergone mutation in
the last generation (for it has been preserved by the elitist
strategy or in case the current generation refers to the initial
population), then randomly choose between MO1 or MO2
with equal probabilities. The rationale behind this approach
is very simple and intuitive: keep applying operator MOi
as long as improvements are observed; otherwise, change
the mutation operator. This idea is better justified when the
search for the most natural number of clusters is considered.
Suppose, for example, that the ith individual encodes a
partition with k clusters, where k is much higher than k∗

(the most natural number of clusters in the data set). It is
reasonable to conjecture that the fitness of this individual
tends to increase if the number of clusters it encodes, k,
is reduced. From this perspective, it is legitimate to try
keeping the application of MO1 to that individual as long
as improvements in its fitness are observed. This is likely to
happen until the number of clusters k becomes lower than
k∗.

It is worth remarking that the above-mentioned approach
for the guided application of the mutation operators is
different from that which was originally used by F-EAC
[12]. In Section III-A, experiments involving a number of
data sets provide empirical evidence that this novel approach
may outperform the original one, besides being simpler.

III. EXPERIMENTS

Six artificial and two real data sets are considered here.
Specifically, five artificial data sets, hereafter referred to
as Bio1, Bio2, Bio3, Bio4, and Bio5, consist of synthetic
gene-expression data with error distributions derived from
real data [25]. These data sets are available in [26] (those
without repeated measurements and with low noise lev-
els). They have 400 objects (genes) each, almost equally
distributed between six clusters, and are described by 20
attributes (measures). The sixth artificial data set is 9-Gauss
(Figure 1) [11]3. 9-Gauss has 9 overlapping clusters, each of
which formed by 100 objects generated from bidimensional
Gaussian distributions with equal variances. One of the real
data sets is the yeast galactose data (Yeast for short) [27],
[25]. As in [25], we use a subset of 205 objects (genes),
whose expression patterns reflect 4 functional categories
(clusters). The second real data set considered here is the

3Available at www.icmc.usp.br/∼campello/Sub Pages/JH.htm.

Figure 1. Data set 9-Gauss.

well-known Original Breast Cancer Wisconsin data (Breast
for short) [28]. For each data set, a relational data matrix
R is computed using the Euclidian distance (normalized
w.r.t. the number of present attribute values, since Breast
has 16 objects with missing values). This matrix is the only
information to be provided as input to F-EARC.

Let us recall from Section II that the parameters of F-
EARC are the population size, m, and the maximum number
of local search iterations, t. The latter is set here as t = 5,
for the reasons already discussed in Section II-C. In what
concerns the population size, this parameter is not critical
for most evolutionary algorithms. Roughly speaking, large
populations tend to cause the evolutionary search to converge
to a good solution in a few generations (each of them
computationally costly due to the large population size).
Small populations, in opposite, will likely make the algo-
rithm converge after a higher number of generations, which
however tend to be individually less computationally costly,
since only a few individuals will be processed. Particularly,
EAC-like algorithms have shown to be quite robust to the
choice of m [12], [11]. Actually, they have shown to be
effective even when evolving a very small population of
solutions, such as m = 4, over real data [10]. In spite of
this, empirical evidence suggests that values around m = 10
provide a better trade-off between required accuracy and the
overall processing time needed to achieve it [11]. For this
reason, a population of m = 10 individuals is adopted here.
For the sake of a more fair comparison against systematic
(repetitive) methods, to be discussed in the sequel, the
numbers of clusters encoded into the individuals of the
population are forced to stay within the range [2,

√
n],

though this is not necessary in real applications.
Two widespread repetitive methods that automatically

estimate the number of clusters in data are considered for
comparison purposes. The first one, here referred to as Or-
dered Multiple Runs (OMR), gets two positive integers, np

and t, an interval [kmin, kmax], a clustering algorithm E, and
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Table I
AVERAGE RUNNING TIMES (S) FOR F-EARC.

data sets
app Bio1 Bio2 Bio3 Bio4 Bio5 Yeast 9-Gauss Breast

BKM
o 10.6 5.7 4.6 11.5 13.9 1.8 88.6 9.1
n 9.0 5.9 5.2 11.4 10.4 1.8 66.2 7.5

RHCM
o 12.1 7.3 10.1 18.6 17.4 1.6 61.6 23.0
n 14.1 7.1 9.8 16.5 12.3 1.8 57.1 19.9

a relative clustering validity criterion V (e.g., the Silhouette
criterion) as inputs. OMR executes E, for a maximum of t
iterations, np times for each k ∈ [kmin, kmax]. The partition
with the best value of V is returned as the output. The second
method, here referred to as Multiple Runs (MR), gets t,
[kmin, kmax], an algorithm E, a validity criterion V , and a
reference (desired) validity value S∗ for V as inputs. MR
repeatedly draws a value of k (randomly) from [kmin, kmax]
and runs E for at most t iterations, until a partition with
value of V equal to or better than S∗ is found. In order
to specify the embedded clustering algorithms, E, we refer
here to the names OMR-BKM, OMR-RHCM, MR-BKM,
and MR-RHCM, which are self-explainable.

A. Analysis of the application method of the mutation oper-
ators

In a preliminary experiment, F-EARC was executed 50
times for each data set using two different approaches for
the guided application of the mutation operators: the novel
approach described in Section II-E and the one originally
employed by F-EAC [12]. In order to set up a stopping
criterion for F-EARC, OMR was run with np = 100,
t = ∞, [kmin, kmax] = [2,

√
n], E = BKM (RHCM), and

V = Silhouette. The best Silhouette value achieved, S∗BKM
(S∗RHCM), was taken as a stopping criterion for F-EARC-
BKM (F-EARC-RHCM); i.e., F-EARC stopped whenever
a partition with Silhouette equal to or larger than S∗BKM
(S∗RHCM) was found. Table I displays the average running
times. In this table, “app = n” refers to the novel approach
described in Section II-E, whereas “app = o” refers to the
one employed by the original F-EAC. Table I shows that
the overall performance of the original application method is
worse. In only 4 out of 16 experiments the original method
showed slightly better average times. For this reason, the
novel, simpler method described in Section II-E was adopted
in the subsequent experiments.

B. F-EARC versus repetitive approaches

For each data set, OMR-BKM (OMR-RHCM) was run 30
times with t = 5, V = Silhouette, [kmin, kmax] = [2,

√
n],

and np = 5, 10, 15, and 20. The best Silhouette value
S∗BKM (S∗RHCM) out of these 30 × 4 = 120 runs was
taken as the reference value for MR-BKM (MR-RHCM),
i.e., S∗ = S∗BKM (S∗ = S∗RHCM). MR-BKM (MR-RHCM)
was then run 30 times for each data set, using the same

Table II
AVERAGE RUNNING TIMES (S): BKM.

data sets
Algorithm Bio1 Bio2 Bio3 Bio4 Bio5 Yeast 9-Gauss Breast
OMR (5) 6.3 6.3 6.4 6.3 6.4 2.4 26.4 15.8
OMR (10) 12.6 12.6 12.9 12.7 12.8 4.8 52.7 31.5
OMR (15) 18.9 18.9 19.3 19.1 19.3 7.2 79.1 47.3
OMR (20) 25.2 25.1 25.7 25.4 25.6 9.6 105.6 63.0
MR 8.1 4.9 - - 118.2 5.1 125.2 3.3
F-EARC 6.2 5.9 7.8 12.8 11.0 1.7 75.3 7.7

Table III
AVERAGE RUNNING TIMES (S): RHCM.

data sets
Algorithm Bio1 Bio2 Bio3 Bio4 Bio5 Yeast 9-Gauss Breast
OMR (5) 18.0 18.0 18.2 17.8 18.0 5.2 129.1 68.9
OMR (10) 35.8 36.0 36.4 35.5 35.9 10.3 258.6 138.0
OMR (15) 53.8 54.0 54.6 53.5 53.8 15.5 388.7 207.0
OMR (20) 71.7 72.0 72.8 71.1 71.7 20.7 518.2 276.0
MR 19.1 11.7 - - 311.2 2.3 245.1 25.6
F-EARC 11.3 8.4 8.8 26.4 12.8 1.6 67.2 19.0

settings for t, V , and [kmin, kmax]. Finally, F-EARC-BKM
(F-EARC-RHCM) was also run 30 times for each data set,
seeking the same reference value S∗BKM (S∗RHCM). Tables II
and III summarize the results. Symbol “-” indicates that a
single run of MR exceeded 30 times the average running
time of OMR for the respective data set. In these cases,
we decided to halt the corresponding experiments for the
conclusions had already become evident.

It can be seen from Tables II and III that F-EARC
outperformed MR in 14 out of 16 experiments (8 data sets
× 2 clustering algorithms). Particularly, MR’s performance
degraded in a noticeable manner for data sets Bio3, Bio4,
and Bio5. We conjecture that these data sets are more
complex than Bio1 and Bio2 from the clustering perspec-
tive. This conjecture stems from the fact that OMR-BKM
(OMR-RHCM) achieved maximum Silhouette values S∗BKM
(S∗RHCM) much less frequently when running (30 times)
over Bio3, Bio4, and Bio5 than when running over Bio1
and Bio2. Likewise, F-EARC also performed significantly
better than MR for data set 9-Gauss. We believe that this
is due to the presence of highly overlapped clusters in 9-
Gauss, which makes the corresponding clustering problem
more difficult. These results suggest that the informed search
strategy employed by F-EARC is more suited to handle more
complex data sets.

Tables II and III also show that F-EARC performed better
than OMR for np = 5 in 11 out of 16 experiments,
and much more prominently for np > 5. These results
become even more expressive when one recalls that: (i) the
reference value S∗BKM (S∗RHCM) for the stopping criterion of
F-EARC was taken as the highest one attained by OMR-
BKM (OMR-RHCM) among all its runs; and (ii) not all
runs of OMR-BKM (OMR-RHCM) achieved a partition
with such a maximum quality. This can be seen from Tables
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Table IV
AVERAGE SILHOUETTE VALUES: BKM.

data sets
Algorithm Bio1 Bio2 Bio3 Bio4 Bio5 Yeast 9-Gauss Breast
OMR (5) 0.64 0.68 0.71 0.69 0.64 0.50 0.48 0.60
OMR (10) 0.64 0.69 0.72 0.69 0.64 0.50 0.48 0.60
OMR (15) 0.64 0.69 0.72 0.69 0.64 0.51 0.49 0.60
OMR (20) 0.64 0.69 0.72 0.69 0.64 0.51 0.49 0.60
MR 0.65 0.69 - - 0.64 0.51 0.49 0.60
F-EARC 0.65 0.69 0.73 0.70 0.64 0.51 0.49 0.60

Table V
AVERAGE SILHOUETTE VALUES: RHCM.

data sets
Algorithm Bio1 Bio2 Bio3 Bio4 Bio5 Yeast 9-Gauss Breast
OMR (5) 0.64 0.69 0.72 0.69 0.64 0.51 0.48 0.60
OMR (10) 0.64 0.69 0.72 0.69 0.64 0.51 0.48 0.60
OMR (15) 0.64 0.69 0.72 0.69 0.64 0.51 0.49 0.60
OMR (20) 0.65 0.69 0.72 0.69 0.64 0.51 0.49 0.60
MR 0.65 0.69 - - 0.64 0.51 0.49 0.60
F-EARC 0.65 0.69 0.73 0.70 0.64 0.51 0.49 0.60

IV and V, which display the mean values of the Silhouette
criterion. Since the highest Silhouette value obtained by
OMR is a lower bound for F-EARC, F-EARC performed
equal to or better than OMR across all experiments. This is
also observed in most columns of Tables VI and VII, which
display the mean values of the Jaccard external index [7],
[6].

To give better confidence to our conclusions, we applied
the two-sided Wilcoxon rank-sum statistical test (α = 5%)
[29] to the results. Tables VIII and IX show the results of
individual tests between F-EARC and the repetitive algo-
rithms. Symbol 4 means that the null hypothesis is rejected
and F-EARC has a lower ranking sum (F-EARC is faster).
Symbol 5 means that the null hypothesis is rejected and
the corresponding repetitive algorithm has a lower ranking

Table VI
AVERAGE JACCARD VALUES: BKM.

data sets
Algorithm Bio1 Bio2 Bio3 Bio4 Bio5 Yeast 9-Gauss Breast
OMR (5) 0.93 0.71 0.58 0.95 0.81 0.82 0.76 0.86
OMR (10) 0.97 0.75 0.59 0.98 0.74 0.83 0.78 0.86
OMR (15) 0.99 0.75 0.59 1.00 0.75 0.84 0.79 0.86
OMR (20) 0.98 0.75 0.59 1.00 0.75 0.84 0.80 0.86
MR 1.00 0.75 - - 0.74 0.84 0.80 0.86
F-EARC 1.00 0.75 0.59 0.99 0.74 0.84 0.81 0.86

Table VII
AVERAGE JACCARD VALUES: RHCM.

data sets
Algorithm Bio1 Bio2 Bio3 Bio4 Bio5 Yeast 9-Gauss Breast
OMR (5) 0.90 0.74 0.59 0.96 0.78 0.84 0.76 0.87
OMR (10) 0.98 0.75 0.59 1.00 0.75 0.84 0.78 0.87
OMR (15) 0.99 0.75 0.59 1.00 0.75 0.84 0.79 0.87
OMR (20) 1.00 0.75 0.59 1.00 0.75 0.84 0.79 0.87
MR 1.00 0.75 - - 0.74 0.84 0.79 0.87
F-EARC 1.00 0.75 0.59 0.99 0.74 0.84 0.79 0.87

Table VIII
WILCOXON RANK-SUM TEST: BKM.

F-EARC-BKM on data sets
Algorithm Bio1 Bio2 Bio3 Bio4 Bio5 Yeast 9-Gauss Breast
OMR (5) ◦ 4 ◦ 5 5 4 5 4
OMR (10) 4 4 4 ◦ 4 4 ◦ 4
OMR (15) 4 4 4 4 4 4 ◦ 4
OMR (20) 4 4 4 4 4 4 ◦ 4
MR ◦ ◦ 4 4 4 4 ◦ 5

Table IX
WILCOXON RANK-SUM TEST: RHCM.

F-EARC-RHCM on data sets
Algorithm Bio1 Bio2 Bio3 Bio4 Bio5 Yeast 9-Gauss Breast
OMR (5) 4 4 4 5 4 4 4 4
OMR (10) 4 4 4 4 4 4 4 4
OMR (15) 4 4 4 4 4 4 4 4
OMR (20) 4 4 4 4 4 4 4 4
MR ◦ ◦ 4 4 4 ◦ 4 ◦

sum (F-EARC is slower). Symbol ◦ means that there is no
statistical evidence to reject the null hypothesis. It is impor-
tant to notice that F-EARC has only been considered slower
(with statistical significance) in the following scenarios: (i)
when compared to OMR with np = 5 in four data sets;
and (ii) when compared to MR in the Breast data set. In
the first scenario, we did not expect F-EARC to perform
better than OMR (even though that happened for most data
sets), inasmuch as five repetitions (np = 5) for each k is
usually a very optimistic value for OMR-like approaches.
In what concerns the performance of F-EARC against MR
for the Breast data, we once again conjecture that the reason
is the relative simplicity of this data set from the clustering
perspective, in view of the fact that MR was at least five
times faster than OMR with np = 5 for these data.

In summary, 62 out of 80 experiments provided statistical
evidence in favor of F-EARC as a faster algorithm.

IV. CONCLUSIONS

We have addressed the use of evolutionary algorithms to
tackle the problem of clustering relational data sets when
the number of clusters is unknown. Particularly, we have
proposed two relational versions of a Fast Evolutionary Al-
gorithm for Clustering (F-EAC) that are endowed with evo-
lutionary operators capable of dealing with relational data
and variable numbers of clusters. The proposed evolutionary
algorithms for relational clustering have been statistically
assessed in eight data sets against two traditional repetitive
approaches that can also be used to automatically estimate
the number of clusters in relational data. The proposed
algorithm outperformed the repetitive methods in terms of
accuracy and processing time as well. For this reason, we
believe that the proposed algorithms are promising tools to
tackle relational clustering problems when the number of
clusters is not known in advance.
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