
Grammatical Concept Representation for Randomised Optimisation Algorithms in 
Relational Learning 

 

Petr Buryan, Jiří Kubalík 
Department of Cybernetics, 

Czech Technical University in Prague 
Prague, Czech Republic 

{buryan, kubalik}@labe.felk.cvut.cz  

Katsumi Inoue 
National Institute of Informatics, 
2-1-2 Hitotsubashi, Chiyoda-ku, 

Tokyo, Japan 
ki@nii.ac.jp

 
 

Abstract— This paper proposes a novel grammar-based 
framework of concept representation for randomized search in 
Relational Learning (RL), namely for Inductive Logic 
Programming. The utilization of grammars guarantees that the 
search operations produce syntactically correct concepts and 
that the background knowledge encoded in the grammar can 
be used both for directing the search and for restricting the 
space of possible concepts to relevant candidate concepts 
(semantically valid concepts). Not only that it enables handling 
and incorporating the domain knowledge in a declarative 
fashion, but grammars also make the new approach 
transparent, flexible, less problem-specific and allow it to be 
easily used by almost any randomized algorithm within RL. 
Initial test results suggest that the grammar-based algorithm 
has strong potential for RL tasks. 
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I.  INTRODUCTION  
One of busy areas of Relational Learning (RL) [3] is 

Inductive Concept Learning (ICL) where a limited set of 
positive and negative examples called training set is used to 
induce a concept description. Challenging class of learning 
problems is the subfield of known as Inductive Logic 
Programming [1] (ILP). ILP uses a fragment of First Order 
Logic (FOL) as the hypothesis language and its fundamental 
characteristic is the ability to accommodate background 
knowledge in order to efficiently guide the search.  

In this paper, we address the problem of relational 
domain representation that would allow random based 
optimization algorithms such as Evolutionary algorithms [4] 
to efficiently and effectively search for concepts in ILP. The 
specific characteristics of the relational domain (enormous 
size of the space of possible concepts with sparse presence of 
meaningful ones, necessity to incorporate background 
knowledge) still inhibit wider utilization of stochastic search 
in ILP. 

We introduce a novel approach based on utilization of 
grammars which is inspired by Grammatical Evolution [5]. 
This technique is suitable for randomized optimization 
algorithms not only in ILP but also in other RL domains such 
as e.g. Graph Mining. Its main advantage is that it efficiently 
restricts the space of possible concepts towards relevant 
candidate concepts (semantically valid concepts). It also 
enables to handle and incorporate the domain knowledge in a 

transparent and declarative fashion. In addition, this 
approach is not limited to description of either trees only 
(Genetic Programming) or to utilisation of sampling based 
on propositionalisation. 

The paper is organized as follows. Section 2 gives some 
necessary background and related work, Section 3 discusses 
our approach and Section 4 gives results for simple example 
experiment. Finally, Section 5 concludes and discusses some 
ideas for future research. 

II. BACKGROUND 
In ILP, the problem domain is described in FOL which 

provides formal framework for concept description and any 
further reasoning.  

Definition 1. The basic setting of ILP [1]. Given a 
problem defined as triplet (B, E+, E-), where B is 
background knowledge, E+ and E- are sets of positive 
and negative examples, find a theory T,  such that  

1. ep∈ E+: B∧T ⊨ ep  (T is complete) 

2. en∈ E-: B∧T ⊭ en  (T is consistent) 

The process of search for concepts can be seen as a 
search in space of candidate concepts. Starting from an initial 
hypothesis (theory), generalization and specialization 
operators are applied to direct the search towards good 
hypotheses that cover many positive examples and minimum 
of the negative ones. 

A. ILP as Optimisation Problem 
The search for the clause with optimal coverage in ILP is 

in principle just another example of optimization problem 
that is in case of ILP NP-complete [16]. The optimality of 
target hypothesis or concept may be judged by several 
optimization criteria, most often by its completeness, 
consistency, and simplicity [1]. Due to the search 
complexity, ILP systems have large time and storage 
requirements and therefore need efficient search strategies 
[13] (including randomized search). 

Standard ILP systems (including the most popular 
systems FOIL [3], Aleph [2] and Progol [5]) in the search 
strategy employ approaches of sequential covering and hill 
climbing. The disadvantage of combination of greedy and 
hill climbing approach is its susceptibility to local optima. 
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Note that some conjunctions when taken alone may exhibit 
inferior quality but when considered together with other 
literals may constitute an optimal theory. One way to avoid 
getting trapped in local optima and increase the chance of 
converging to more fit solutions is to introduce a stochastic 
component into the search process.  

Randomized algorithms have long been under focus of 
ILP research. To reach interesting concepts in shorter time 
we are willing to give up the completeness of the search in 
favour for quickly learning “sufficient” concept. Different 
basic randomized search algorithms have been developed 
and studied e.g. in works [15] and [18].In paper [18], 
stochastic search for bottom-up rule learning is compared to 
basic GSAT and WalkSAT. 

Another approach to avoid being trapped in local optima 
is utilization of Evolutionary algorithms (EAs) [4]. EAs have 
been in the past successfully used for various concept 
learning problems including various systems for ILP [21]. In 
many evolutionary concept learners, the EAs just replace the 
hill climbing method for finding the best rule to be added 
into the emerging target concept. This is the case of systems 
ECL [6], REGAL [7], G-NET [14] or DOGMA [12]. Binary 
string representation (for which standard blind recombination 
operators can be used) is used for encoding the evolved 
hypotheses in all of them. Unfortunately, very sophisticated 
procedures are required for transforming hypotheses into 
these binary strings. For example, the latest approach [8] 
uses specially constructed binding matrix to transform the 
problem into binary array representation.  

Different representation is used by system GLPS [9] that 
is based on Genetic Programming (GP) and evolves a 
population of complete logic programs. The programs 
evolved are represented as a forest of AND-OR trees, each 
representing a clause, and a standard GP-like crossover 
operator is used to generate new candidate programs from 
selected parents. Another system EVIL_1 [10] also evolves a 
population of logic programs, each encoded as a tree 
structure. However, traditional genetic operators are replaced 
with Progol algorithm that is used for inducing new rules and 
the crossover operator is used here to exchange rules 
between programs.  

The tree representation of concepts used in the latter 
systems is more flexible as it allows considering rules of 
variable form. Such representation also allows utilization of 
effective tree-based crossover operators, where rules, 
clauses, or just parts of clauses can be easily swapped 
between two hypotheses.  

Simulated Annealing (SA) [17] represents another 
stochastic optimisation technique that can be used in ILP. 
Inspired by physical annealing of solids it is an often used 
alternative to evolutionary techniques. First complete 
utilisation of SA in ILP may be seen in [17] (although there 
are some efforts already e.g. in the Aleph system). This SA 
adaptation works with ILP clauses and defines their 
neighbourhood by means of generalisation and specialisation 
operators. 

However, almost all of these conventional concept 
learning approaches do not care about minimising syntactic 
errors and involve much effort in formulating a suitable 

representation and search operators. In addition, this 
formulation must be usually re-addressed for each problem 
domain thus making the systems hard-bound to certain 
problem domain. Generally, most of the above mentioned 
EA approaches use background knowledge only for the 
purposes of generating the initial population (if they use it at 
all). As a result, though bound to special type of concepts 
described (e.g. trees only in GP), the majority of randomised 
approaches to ILP fail to search only syntactically correct 
hypotheses and in consequence perform the search in too 
large space [11]. 

III. GRAMMARS FOR ILP 
All standard randomized optimization algorithms (except 

GP based GAs) work in their basic setting with linear data 
representation (usually with numeric arrays). Two key 
problems occurring here are: generation of meaningful 
clauses at random and their subsequent translation into the 
form of numeric arrays. Due to the enormous size of the 
space of potential hypotheses (infinite when variables are 
introduced), simple random clause generation has no effect 
as almost all such clauses cover either any or all of given 
examples. Efforts have been made to improve efficiency by 
incorporating background knowledge but these often require 
many constraints and are too problem-specific. We suggest a 
novel approach based on utilization of grammars to describe 
the problem domain and the structure of possible concepts. 

Formal grammars, first introduced by Chomsky [19], are 
utilised in Computer Science to formalize the syntactic rules 
that are used to build or analyze phrases of given language. 
Inspired by GE [5], we use grammars in a generative 
approach: driven by numbers of numeric arrays that 
represent potential solutions, grammars are used to translate 
these arrays into logical clauses. Suitable form of such 
grammars comes out of context-free grammar defined in 
Backus-Naur form: 

Definition 2. Grammar in Backus Naur Form (BNF). 
The BNF grammar is represented by the tuple {N, T, P, 
S}, where N is the set of non-terminals, T the set of 
terminals, S is a start symbol which is a member of N 
and P is a set of production rules  
r: N → {N ∪ T}n, n=1, 2, ...  

The rules from P define how a symbol from N on the left 
side of rule is expanded into an ordered set of symbols of N 
and T on the right side of the rule. The final clause generated 
by the grammar consists only of elements of the terminal set 
T. This representation easily enables to implement all 
standard FOL features (such as negations, various logical 
conjunctions etc.) and can also easily go beyond FOL (e.g. 
utilization of numeric constraints). In addition, we suggest 
that each rule may be assigned numeric weight based either 
on the input data or on feedback from the user thereby 
adapting the approach of probabilistic grammars [22]. This 
offers an additional degree of freedom and another 
possibility to give the search desired bias. 

By utilisation of grammars there is actually no need to 
develop specialised problem-specific data structures and/or 
new complicated search operators. It also requires minimal 
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search bias (e.g. there is no necessary limit on clause length 
or on number of literals used). 

A. Context Sensitive Grammars 
Due to the enormous size of the hypotheses space it is 

impossible to rely on the fact that necessary relations shall 
sometime “just appear” during the search. It is important to 
ensure that each literal of the constructed clause is properly 
related to the rest of the clause and that such relations are not 
destroyed later by the search mechanism. Therefore, we 
suggest utilisation of context-sensitive grammar with the aim 
to define and efficiently restrict the search space and to 
smoothly incorporate the background knowledge. 

The grammar has the form similar to BNF with that 
difference that each non-terminal symbol may be assigned a 
set of context constraints under which it can be later replaced 
(see Fig.3 for an example).  

Definition 3. The context sensitive grammar for ILP we 
define as the tuple {N, T, P, S, C}. N is the set of non-
terminals, T the set of terminals, S a start symbol, C is 
set of context related constraints and rules r from P take 
the form r: N × C → {(N×C) ∪ T}n, n=1, 2, .. 

Except for limiting unwanted or unnecessary literal co-
occurrence, the context-related constraints from C are 
important mainly for utilization of variables that define 
relations between literals (according to current state of the 
translated clause constraints can be used to restrict the 
utilization of variables within the argument of some specific 
literal only to those variables that are already used elsewhere 
before in the clause). 

The pseudocode of basic constraint-defined context 
implementation into the translation process is given in 
Algorithm 1. Such implementation enables transparent 
context definition and even utilization of several constraints 
at once. Another advantage of context defined in the form of 
constraints is that these constraints can be automatically 
induced from given relational dataset before the start of the 
search process. 

B. Grammar in Mapping Process 
The numeric array representing the solution is translated 

into logical clause by following algorithm (see Algorithm 1 
for pseudocode). Given an array of numbers A that shall be 
translated the algorithm proceeds with the translation from 
left to right of the array each time processing one number N 
from A and one non-terminal symbol NT from the clause. 

At each step, initially a set of all rules that are generally 
applicable to NT is selected from the grammar. This set is 
then filtered according to context constraints bound to NT 
(each non-terminal NT carries its own specific set of context 
constraints). Finally, the number N is used to select one rule 
from this filtered set of rules (rule weights are also 
considered here) and the rule is applied to the clause.  

Application of the rule results in replacing the non-
terminal NT by set of symbols given by the right hand side of 
the production rule selected. These steps are repeated until 
the final clause is built (i.e. no non-terminals are present) or 
end of array A is reached. In case when end of array A is 

reached and some non-terminals still remain in the clause we 
either clear the remaining non-terminals from the clause or, 
in case when deletion is not possible (e.g. argument of 
literal), we replace them with anonymous variable (_VAR).  

The translation is purely deterministic, each time the 
same array of numbers is translated it will always generate 
the same clause (though expression of each individual 
number within the array is not universal and depends on the 
current non-terminal to which it is being applied and the 
respective context).  

 

C. Grammar Induction 
Inducing the context-sensitive grammar from given data 

represents a novel problem as we need to induce this 
grammar for a special purpose of creating hypotheses from 
an array of numbers. Here we present our first approach to 
solving it. The grammar should basically fulfil two basic 
requirements: it has to allow generation of all clauses that 
have some support in the data (a threshold may be applied 
here) and it should restrict the generation towards such 
clauses that have at least some coverage in the data.  

The induction algorithm constructs basic context-
sensitive grammar in the BNF-like form based on the input 
from the user that defines the target predicate, other 
predicates with their arity (number of arguments, in further 
text we use the notation ‘predicate/arity’) and constants to be 
used in the logical concept search. We start by constructing 
basic graph of relations GR from the given dataset that 
describes the basic structure of the literals and their relations 
used in the dataset. 

Definition 4. Graph of relations GR. GR = <V,E>, where 
V is the set of nodes each node of which corresponds to 
one argument of a literal or one constant and E is set of 

Algorithm 1 Translation algorithm 
Input: Array a, Grammar G 
Output: Clause C
C = {start_symbol}
C_contains_nonterminals = true 
posa = 1 
while(C_contains_nonterminals) do 
if (posa>length(a)) break while 
N = number at position posa in a 
NT = first non-terminal symbol from the left in C 
RHS = get set of all production rules applicable for NT 

from grammar G 
RHS’ = filter out unsuitable rules from RHS acc. to 

context constraints bound with  NT 
RN = N modulo size(RHS’) 
PR = select rule at position RN from RHS’ 
C = replace NT in C according to the rule PR 
if (still some non-terminals exist in C) 
     posa++ 
 else 
 C_contains_nonterminals=false 
end while 
if (C_contains_nonterminals) post-process(C)   
return C
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edges. Two nodes n1, n2 are connected by an edge from 
E if 

- n1 corresponds to i-th argument of literal L, n2 is 
constant C, C can be used as the i-th argument of L 
(such situation appears in given data); example query: 
‘odd(2)?’; 

- n1 corresponds to i-th argument of literal L1, n2 
corresponds to j-th argument of literal L2,  the same 
variable can be used concurrently in both arguments 
n1 and n2 (such situation appears in given data); 
example queries: ‘successor(X, X)?’ or 
‘even(X) and odd(X)?’. 

After obtaining GR we order its nodes hierarchically into 
layers based on the relations of predicates (the edges): first 
layer consists only of the target predicate nodes, the next 
layer consists of nodes of those predicates that are related 
directly with the target, third layer of predicates related 
directly with predicates from second layer (and not the first) 
and so on.  

The grammar is built form GR in following way: the first 
rule of the new grammar replaces initial start symbol by a 
conjunction of target predicate (first layer) and one non-
terminal NT0. Second rule defines the replacement of NT0 by 
other terminal symbols from the second layer in conjunction 
with non-terminals that can be replaced by symbols from the 
same (second) and the next (third) layer. This principle is 
shared by further rules according to the relations that are 
discovered in the data. In addition, a set of context 
constraints is linked to each of the non-terminal symbols 
based on existing and non-existing edges in the graph GR. 

The context generally can include all predicates of the 
whole translated clause. We consider only basic graph of 
relations i.e. relation only of pairs of predicates when 
creating the grammar as this is the basic case for relational 
domains. Broader context scope may be considered but this 
implies that the number of queries that need to be performed 
during grammar induction as well as the time of translation 
would rise very fast. 

Considering simple numeric dataset from Fig 1, Fig.2 
shows an example of its graph GR with only three predicates 
(even/1, odd/1, successor/2) and one constant 
(number ‘2’) used. The graph GR is built in order to be 
finally used to create the grammar for the search of the 
concept of even numbers even/1. An example of grammar 
that is induced from the graph is in Figure 3. In the grammar, 
the number of variables was limited to 2, the only constant 
available is ‘2’, symbol ‘|’ is used as delimiter in those cases, 
where there is more than one production rule applicable to 
one non-terminal. 

     

 

Figure 1.  Simple even-odd dataset (in Prolog format) 

 
Figure 2.  Graph of basic dataset structure (even/odd numbers, 3 literals, 1 

constant utilisable).  Full arrows represent potential relation between 
arguments, dashed line used for intra-argument relation, empty arrows 

stand for utilisation of constants. Black arrows signalise existing relation, 
red arrows signalize that there is no relation 

Figure 3. Grammar for search for the concept describing even numbers 
induced from graph in Fig.2 

IV. EXPERIMENT 
A short experiment is presented in this section using the 

basic Trains Going East or Going West problem proposed in 
[20] and its extension to randomly generated 1000 trains as 
presented in [8]. This dataset represents standard artificial 
learning problem in FOL and was primarily constructed to 
illustrate ILP learning capabilities. The dataset of 1000 trains 
was randomly generated by stochastic generator for the 
purposes of testing the abilities of grammars. Therefore, no 
hidden concept was used for discrimination between 
eastbound and westbound trains.  

In our first experiment we analysed the ability of our 
approach to generate “useful” clauses i.e. such clauses that 
cover part of examples but not all of them. This is important 
not only for genesis of the initial population of clauses for 

(I) <start> → <lit0> ⇒ even(<var>) 
(II) <lit0> → <lit0> and <lit0>  | (1) 
   → odd(<lit1>+ctx1)     | (2) 
   → successor(<lit1>+ctx2, 
    <lit1>+ctx3)(3) 
(III) <lit1> → <var> | (1) 
             → 2        (2) 
(IV) <var> → X1 | (1) 

→ X2  (2) 
 

Contexts: 
 ctx1: no other replacement of 

<var> than the one already used in 
argument of successor/2 (any of both 
arguments) 

 ctx2: use replacement of <var> 
that is already used in argument of 
even/1 or odd/1  

 ctx3: use replacement of <var> 
that is already used in argument of 
even/1 or odd/1 or a new <var> (not 
used elsewhere), do not use <var> 
that is already used in first 
(sibling) argument of the very same 
predicate successor/2 

even(2). even(4). even(6).... 
odd(1). odd(3). odd(5). ... 

 
successor(X,Y) :- X = Y + 1. 
successor(X,Y) :- Y = X - 1.
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evolutionary search but also for the whole function of the 
search, because modification of each member (clause) 
should ideally result back in “useful” clause. 

TABLE I.  COVERAGE OF 10.000 RANDOMLY GENERATED CLAUSES 

Dataset 
10 trains 
(original) 

1000 trains 
(random) 

Avg. example size 
[literals in conj.] 

21.3 47.3 

Array length [bytes] 16 32 48 16 32 48 

Avg. clause length 
[literals in conj.] 

3.7 7.6 11.5 3.6 7.6 11.5

Clauses with zero 
coverage [%] 12 62 80 5 37 78 

Clauses with full 
coverage [%] 8 2 0 24 4 0 

Other clauses [%] 80 36 20 71 59 22 
 

The results summed in the Table 1 show the potential of 
our grammar-based concept. The grammar induced 
generated even for “random” conjunction of 11 literals 20% 
clauses with non-zero coverage. This seems to be a good 
starting position for randomised optimisers such as GE or 
SA. With implementation of more sophisticated context and 
more sophisticated induction algorithm this rate should 
further improve. 

The second table (see Tab.2) gives brief comparison of 
stochastic GSAT search (Aleph[2] implementation) with 
greedy concept generation method that uses grammar 
framework and builds the concept by iterative steps (at each 
step adding several literals to the concept conjunction). 

For this experiment we selected two datasets (5 
eastbound trains and 5 westbound trains each) from the 1000 
trains dataset, so that the shortest clause explaining all 
positive and no negative example of the new datasets 
contains 5 resp. 7 literals (tested by exhaustive search in 
Aleph). Required coverage of the new searched concept was 
set to all positive and no negative examples (this could be 
theoretically also accomplished by disjunction of several 
clauses but this was not the target of this test). Results 
summarising 30 runs are given in table Tab.2. 

TABLE II.  COMPARISON OF GSAT AND GRAMMAR-BASED GREEDY 
ALGORITHM 

Min. 
concept 
length 

Algorithm 
type 

Avg. 
clauses 

constructed 

Standard 
Deviation 

Succ. 
Runs
[%](1 

5 GSAT 4724.5 5139.1 100 
  Grammars 3835.2 3172.0 95 
7 GSAT 6668.0 4797.1 45 
  Grammars 4140.9 2854.9 95 

(1 Number of runs terminated before reaching limit of 20.000 clauses 
(avg. from 30 runs) 
 

Apart from better consistency of stochastic grammar-
based method (lower std. deviation) these results indicate 
better efficiency of grammar-based search especially in the 
dataset that contains larger concepts only. 

V. CONCLUDING REMARKS AND FURTHER WORK 
In this paper, we approached the problem of learning 

interesting concepts in relational domains (namely ILP) as an 
optimisation task with the focus on utilisation of randomised 
searchers. We proposed a novel approach to problem 
representation that is based on context-sensitive rewriting 
grammars. We also presented basic algorithm for inducing 
this grammar from analysed data. Our approach is not 
restricted to description of either trees-only (GP) neither to 
utilisation of sampling based on propositionalisation. 

Grammars represent a novel and suitable alternative for 
representation of logical hypotheses as series of numbers. 
They showed they are able to handle and incorporate the 
domain knowledge in a transparent and declarative fashion 
and therefore are suitable for utilisation within randomised 
searchers (GAs, SA etc.) in the relational domains. They can 
also easily reach beyond the scope of FOL (e.g. numeric 
constraints).  

Further work will focus mainly on following issues: 
• thorough comparison with state of the art techniques 

(work in progress) on various datasets; 
• development of proper schemes for fast array 

translation and clause coverage calculation; 
• analysis of expressivity and detailed requirements on 

the grammars, utilization of non-rewriting symbols 
(directives) the context and its scope refinement; 

• full implementation within a GE system. 
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