
Grammatical Concept Representation for Randomised Optimisation Algorithms in
Relational Learning

Petr Buryan, Jiří Kubalík
Department of Cybernetics,

Czech Technical University in Prague
Prague, Czech Republic

{buryan, kubalik}@labe.felk.cvut.cz

Katsumi Inoue
National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku,

Tokyo, Japan
ki@nii.ac.jp

Abstract— This paper proposes a novel grammar-based
framework of concept representation for randomized search in
Relational Learning (RL), namely for Inductive Logic
Programming. The utilization of grammars guarantees that the
search operations produce syntactically correct concepts and
that the background knowledge encoded in the grammar can
be used both for directing the search and for restricting the
space of possible concepts to relevant candidate concepts
(semantically valid concepts). Not only that it enables handling
and incorporating the domain knowledge in a declarative
fashion, but grammars also make the new approach
transparent, flexible, less problem-specific and allow it to be
easily used by almost any randomized algorithm within RL.
Initial test results suggest that the grammar-based algorithm
has strong potential for RL tasks.

Keywords: ILP; randomised search; grammars

I. INTRODUCTION
One of busy areas of Relational Learning (RL) [3] is

Inductive Concept Learning (ICL) where a limited set of
positive and negative examples called training set is used to
induce a concept description. Challenging class of learning
problems is the subfield of known as Inductive Logic
Programming [1] (ILP). ILP uses a fragment of First Order
Logic (FOL) as the hypothesis language and its fundamental
characteristic is the ability to accommodate background
knowledge in order to efficiently guide the search.

In this paper, we address the problem of relational
domain representation that would allow random based
optimization algorithms such as Evolutionary algorithms [4]
to efficiently and effectively search for concepts in ILP. The
specific characteristics of the relational domain (enormous
size of the space of possible concepts with sparse presence of
meaningful ones, necessity to incorporate background
knowledge) still inhibit wider utilization of stochastic search
in ILP.

We introduce a novel approach based on utilization of
grammars which is inspired by Grammatical Evolution [5].
This technique is suitable for randomized optimization
algorithms not only in ILP but also in other RL domains such
as e.g. Graph Mining. Its main advantage is that it efficiently
restricts the space of possible concepts towards relevant
candidate concepts (semantically valid concepts). It also
enables to handle and incorporate the domain knowledge in a

transparent and declarative fashion. In addition, this
approach is not limited to description of either trees only
(Genetic Programming) or to utilisation of sampling based
on propositionalisation.

The paper is organized as follows. Section 2 gives some
necessary background and related work, Section 3 discusses
our approach and Section 4 gives results for simple example
experiment. Finally, Section 5 concludes and discusses some
ideas for future research.

II. BACKGROUND
In ILP, the problem domain is described in FOL which

provides formal framework for concept description and any
further reasoning.

Definition 1. The basic setting of ILP [1]. Given a
problem defined as triplet (B, E+, E-), where B is
background knowledge, E+ and E- are sets of positive
and negative examples, find a theory T, such that

1. ep∈ E+: B∧T ⊨ ep (T is complete)

2. en∈ E-: B∧T ⊭ en (T is consistent)

The process of search for concepts can be seen as a
search in space of candidate concepts. Starting from an initial
hypothesis (theory), generalization and specialization
operators are applied to direct the search towards good
hypotheses that cover many positive examples and minimum
of the negative ones.

A. ILP as Optimisation Problem
The search for the clause with optimal coverage in ILP is

in principle just another example of optimization problem
that is in case of ILP NP-complete [16]. The optimality of
target hypothesis or concept may be judged by several
optimization criteria, most often by its completeness,
consistency, and simplicity [1]. Due to the search
complexity, ILP systems have large time and storage
requirements and therefore need efficient search strategies
[13] (including randomized search).

Standard ILP systems (including the most popular
systems FOIL [3], Aleph [2] and Progol [5]) in the search
strategy employ approaches of sequential covering and hill
climbing. The disadvantage of combination of greedy and
hill climbing approach is its susceptibility to local optima.

2009 Ninth International Conference on Intelligent Systems Design and Applications

978-0-7695-3872-3/09 $26.00 © 2009 IEEE

DOI 10.1109/ISDA.2009.156

1450

Note that some conjunctions when taken alone may exhibit
inferior quality but when considered together with other
literals may constitute an optimal theory. One way to avoid
getting trapped in local optima and increase the chance of
converging to more fit solutions is to introduce a stochastic
component into the search process.

Randomized algorithms have long been under focus of
ILP research. To reach interesting concepts in shorter time
we are willing to give up the completeness of the search in
favour for quickly learning “sufficient” concept. Different
basic randomized search algorithms have been developed
and studied e.g. in works [15] and [18].In paper [18],
stochastic search for bottom-up rule learning is compared to
basic GSAT and WalkSAT.

Another approach to avoid being trapped in local optima
is utilization of Evolutionary algorithms (EAs) [4]. EAs have
been in the past successfully used for various concept
learning problems including various systems for ILP [21]. In
many evolutionary concept learners, the EAs just replace the
hill climbing method for finding the best rule to be added
into the emerging target concept. This is the case of systems
ECL [6], REGAL [7], G-NET [14] or DOGMA [12]. Binary
string representation (for which standard blind recombination
operators can be used) is used for encoding the evolved
hypotheses in all of them. Unfortunately, very sophisticated
procedures are required for transforming hypotheses into
these binary strings. For example, the latest approach [8]
uses specially constructed binding matrix to transform the
problem into binary array representation.

Different representation is used by system GLPS [9] that
is based on Genetic Programming (GP) and evolves a
population of complete logic programs. The programs
evolved are represented as a forest of AND-OR trees, each
representing a clause, and a standard GP-like crossover
operator is used to generate new candidate programs from
selected parents. Another system EVIL_1 [10] also evolves a
population of logic programs, each encoded as a tree
structure. However, traditional genetic operators are replaced
with Progol algorithm that is used for inducing new rules and
the crossover operator is used here to exchange rules
between programs.

The tree representation of concepts used in the latter
systems is more flexible as it allows considering rules of
variable form. Such representation also allows utilization of
effective tree-based crossover operators, where rules,
clauses, or just parts of clauses can be easily swapped
between two hypotheses.

Simulated Annealing (SA) [17] represents another
stochastic optimisation technique that can be used in ILP.
Inspired by physical annealing of solids it is an often used
alternative to evolutionary techniques. First complete
utilisation of SA in ILP may be seen in [17] (although there
are some efforts already e.g. in the Aleph system). This SA
adaptation works with ILP clauses and defines their
neighbourhood by means of generalisation and specialisation
operators.

However, almost all of these conventional concept
learning approaches do not care about minimising syntactic
errors and involve much effort in formulating a suitable

representation and search operators. In addition, this
formulation must be usually re-addressed for each problem
domain thus making the systems hard-bound to certain
problem domain. Generally, most of the above mentioned
EA approaches use background knowledge only for the
purposes of generating the initial population (if they use it at
all). As a result, though bound to special type of concepts
described (e.g. trees only in GP), the majority of randomised
approaches to ILP fail to search only syntactically correct
hypotheses and in consequence perform the search in too
large space [11].

III. GRAMMARS FOR ILP
All standard randomized optimization algorithms (except

GP based GAs) work in their basic setting with linear data
representation (usually with numeric arrays). Two key
problems occurring here are: generation of meaningful
clauses at random and their subsequent translation into the
form of numeric arrays. Due to the enormous size of the
space of potential hypotheses (infinite when variables are
introduced), simple random clause generation has no effect
as almost all such clauses cover either any or all of given
examples. Efforts have been made to improve efficiency by
incorporating background knowledge but these often require
many constraints and are too problem-specific. We suggest a
novel approach based on utilization of grammars to describe
the problem domain and the structure of possible concepts.

Formal grammars, first introduced by Chomsky [19], are
utilised in Computer Science to formalize the syntactic rules
that are used to build or analyze phrases of given language.
Inspired by GE [5], we use grammars in a generative
approach: driven by numbers of numeric arrays that
represent potential solutions, grammars are used to translate
these arrays into logical clauses. Suitable form of such
grammars comes out of context-free grammar defined in
Backus-Naur form:

Definition 2. Grammar in Backus Naur Form (BNF).
The BNF grammar is represented by the tuple {N, T, P,
S}, where N is the set of non-terminals, T the set of
terminals, S is a start symbol which is a member of N
and P is a set of production rules
r: N → {N ∪ T}n, n=1, 2, ...

The rules from P define how a symbol from N on the left
side of rule is expanded into an ordered set of symbols of N
and T on the right side of the rule. The final clause generated
by the grammar consists only of elements of the terminal set
T. This representation easily enables to implement all
standard FOL features (such as negations, various logical
conjunctions etc.) and can also easily go beyond FOL (e.g.
utilization of numeric constraints). In addition, we suggest
that each rule may be assigned numeric weight based either
on the input data or on feedback from the user thereby
adapting the approach of probabilistic grammars [22]. This
offers an additional degree of freedom and another
possibility to give the search desired bias.

By utilisation of grammars there is actually no need to
develop specialised problem-specific data structures and/or
new complicated search operators. It also requires minimal

1451

search bias (e.g. there is no necessary limit on clause length
or on number of literals used).

A. Context Sensitive Grammars
Due to the enormous size of the hypotheses space it is

impossible to rely on the fact that necessary relations shall
sometime “just appear” during the search. It is important to
ensure that each literal of the constructed clause is properly
related to the rest of the clause and that such relations are not
destroyed later by the search mechanism. Therefore, we
suggest utilisation of context-sensitive grammar with the aim
to define and efficiently restrict the search space and to
smoothly incorporate the background knowledge.

The grammar has the form similar to BNF with that
difference that each non-terminal symbol may be assigned a
set of context constraints under which it can be later replaced
(see Fig.3 for an example).

Definition 3. The context sensitive grammar for ILP we
define as the tuple {N, T, P, S, C}. N is the set of non-
terminals, T the set of terminals, S a start symbol, C is
set of context related constraints and rules r from P take
the form r: N × C → {(N×C) ∪ T}n, n=1, 2, ..

Except for limiting unwanted or unnecessary literal co-
occurrence, the context-related constraints from C are
important mainly for utilization of variables that define
relations between literals (according to current state of the
translated clause constraints can be used to restrict the
utilization of variables within the argument of some specific
literal only to those variables that are already used elsewhere
before in the clause).

The pseudocode of basic constraint-defined context
implementation into the translation process is given in
Algorithm 1. Such implementation enables transparent
context definition and even utilization of several constraints
at once. Another advantage of context defined in the form of
constraints is that these constraints can be automatically
induced from given relational dataset before the start of the
search process.

B. Grammar in Mapping Process
The numeric array representing the solution is translated

into logical clause by following algorithm (see Algorithm 1
for pseudocode). Given an array of numbers A that shall be
translated the algorithm proceeds with the translation from
left to right of the array each time processing one number N
from A and one non-terminal symbol NT from the clause.

At each step, initially a set of all rules that are generally
applicable to NT is selected from the grammar. This set is
then filtered according to context constraints bound to NT
(each non-terminal NT carries its own specific set of context
constraints). Finally, the number N is used to select one rule
from this filtered set of rules (rule weights are also
considered here) and the rule is applied to the clause.

Application of the rule results in replacing the non-
terminal NT by set of symbols given by the right hand side of
the production rule selected. These steps are repeated until
the final clause is built (i.e. no non-terminals are present) or
end of array A is reached. In case when end of array A is

reached and some non-terminals still remain in the clause we
either clear the remaining non-terminals from the clause or,
in case when deletion is not possible (e.g. argument of
literal), we replace them with anonymous variable (_VAR).

The translation is purely deterministic, each time the
same array of numbers is translated it will always generate
the same clause (though expression of each individual
number within the array is not universal and depends on the
current non-terminal to which it is being applied and the
respective context).

C. Grammar Induction
Inducing the context-sensitive grammar from given data

represents a novel problem as we need to induce this
grammar for a special purpose of creating hypotheses from
an array of numbers. Here we present our first approach to
solving it. The grammar should basically fulfil two basic
requirements: it has to allow generation of all clauses that
have some support in the data (a threshold may be applied
here) and it should restrict the generation towards such
clauses that have at least some coverage in the data.

The induction algorithm constructs basic context-
sensitive grammar in the BNF-like form based on the input
from the user that defines the target predicate, other
predicates with their arity (number of arguments, in further
text we use the notation ‘predicate/arity’) and constants to be
used in the logical concept search. We start by constructing
basic graph of relations GR from the given dataset that
describes the basic structure of the literals and their relations
used in the dataset.

Definition 4. Graph of relations GR. GR = <V,E>, where
V is the set of nodes each node of which corresponds to
one argument of a literal or one constant and E is set of

Algorithm 1 Translation algorithm
Input: Array a, Grammar G
Output: Clause C
C = {start_symbol}
C_contains_nonterminals = true
posa = 1
while(C_contains_nonterminals) do
if (posa>length(a)) break while
N = number at position posa in a
NT = first non-terminal symbol from the left in C
RHS = get set of all production rules applicable for NT

from grammar G
RHS’ = filter out unsuitable rules from RHS acc. to

context constraints bound with NT
RN = N modulo size(RHS’)
PR = select rule at position RN from RHS’
C = replace NT in C according to the rule PR
if (still some non-terminals exist in C)
 posa++
 else
 C_contains_nonterminals=false
end while
if (C_contains_nonterminals) post-process(C)
return C

1452

edges. Two nodes n1, n2 are connected by an edge from
E if

- n1 corresponds to i-th argument of literal L, n2 is
constant C, C can be used as the i-th argument of L
(such situation appears in given data); example query:
‘odd(2)?’;

- n1 corresponds to i-th argument of literal L1, n2
corresponds to j-th argument of literal L2, the same
variable can be used concurrently in both arguments
n1 and n2 (such situation appears in given data);
example queries: ‘successor(X, X)?’ or
‘even(X) and odd(X)?’.

After obtaining GR we order its nodes hierarchically into
layers based on the relations of predicates (the edges): first
layer consists only of the target predicate nodes, the next
layer consists of nodes of those predicates that are related
directly with the target, third layer of predicates related
directly with predicates from second layer (and not the first)
and so on.

The grammar is built form GR in following way: the first
rule of the new grammar replaces initial start symbol by a
conjunction of target predicate (first layer) and one non-
terminal NT0. Second rule defines the replacement of NT0 by
other terminal symbols from the second layer in conjunction
with non-terminals that can be replaced by symbols from the
same (second) and the next (third) layer. This principle is
shared by further rules according to the relations that are
discovered in the data. In addition, a set of context
constraints is linked to each of the non-terminal symbols
based on existing and non-existing edges in the graph GR.

The context generally can include all predicates of the
whole translated clause. We consider only basic graph of
relations i.e. relation only of pairs of predicates when
creating the grammar as this is the basic case for relational
domains. Broader context scope may be considered but this
implies that the number of queries that need to be performed
during grammar induction as well as the time of translation
would rise very fast.

Considering simple numeric dataset from Fig 1, Fig.2
shows an example of its graph GR with only three predicates
(even/1, odd/1, successor/2) and one constant
(number ‘2’) used. The graph GR is built in order to be
finally used to create the grammar for the search of the
concept of even numbers even/1. An example of grammar
that is induced from the graph is in Figure 3. In the grammar,
the number of variables was limited to 2, the only constant
available is ‘2’, symbol ‘|’ is used as delimiter in those cases,
where there is more than one production rule applicable to
one non-terminal.

Figure 1. Simple even-odd dataset (in Prolog format)

Figure 2. Graph of basic dataset structure (even/odd numbers, 3 literals, 1

constant utilisable). Full arrows represent potential relation between
arguments, dashed line used for intra-argument relation, empty arrows

stand for utilisation of constants. Black arrows signalise existing relation,
red arrows signalize that there is no relation

Figure 3. Grammar for search for the concept describing even numbers
induced from graph in Fig.2

IV. EXPERIMENT
A short experiment is presented in this section using the

basic Trains Going East or Going West problem proposed in
[20] and its extension to randomly generated 1000 trains as
presented in [8]. This dataset represents standard artificial
learning problem in FOL and was primarily constructed to
illustrate ILP learning capabilities. The dataset of 1000 trains
was randomly generated by stochastic generator for the
purposes of testing the abilities of grammars. Therefore, no
hidden concept was used for discrimination between
eastbound and westbound trains.

In our first experiment we analysed the ability of our
approach to generate “useful” clauses i.e. such clauses that
cover part of examples but not all of them. This is important
not only for genesis of the initial population of clauses for

(I) <start> → <lit0> ⇒ even(<var>)
(II) <lit0> → <lit0> and <lit0> | (1)
 → odd(<lit1>+ctx1) | (2)
 → successor(<lit1>+ctx2,
 <lit1>+ctx3)(3)
(III) <lit1> → <var> | (1)
 → 2 (2)
(IV) <var> → X1 | (1)

→ X2 (2)

Contexts:
 ctx1: no other replacement of

<var> than the one already used in
argument of successor/2 (any of both
arguments)

 ctx2: use replacement of <var>
that is already used in argument of
even/1 or odd/1

 ctx3: use replacement of <var>
that is already used in argument of
even/1 or odd/1 or a new <var> (not
used elsewhere), do not use <var>
that is already used in first
(sibling) argument of the very same
predicate successor/2

even(2). even(4). even(6)....
odd(1). odd(3). odd(5). ...

successor(X,Y) :- X = Y + 1.
successor(X,Y) :- Y = X - 1.

1453

evolutionary search but also for the whole function of the
search, because modification of each member (clause)
should ideally result back in “useful” clause.

TABLE I. COVERAGE OF 10.000 RANDOMLY GENERATED CLAUSES

Dataset
10 trains
(original)

1000 trains
(random)

Avg. example size
[literals in conj.]

21.3 47.3

Array length [bytes] 16 32 48 16 32 48

Avg. clause length
[literals in conj.]

3.7 7.6 11.5 3.6 7.6 11.5

Clauses with zero
coverage [%] 12 62 80 5 37 78

Clauses with full
coverage [%] 8 2 0 24 4 0

Other clauses [%] 80 36 20 71 59 22

The results summed in the Table 1 show the potential of
our grammar-based concept. The grammar induced
generated even for “random” conjunction of 11 literals 20%
clauses with non-zero coverage. This seems to be a good
starting position for randomised optimisers such as GE or
SA. With implementation of more sophisticated context and
more sophisticated induction algorithm this rate should
further improve.

The second table (see Tab.2) gives brief comparison of
stochastic GSAT search (Aleph[2] implementation) with
greedy concept generation method that uses grammar
framework and builds the concept by iterative steps (at each
step adding several literals to the concept conjunction).

For this experiment we selected two datasets (5
eastbound trains and 5 westbound trains each) from the 1000
trains dataset, so that the shortest clause explaining all
positive and no negative example of the new datasets
contains 5 resp. 7 literals (tested by exhaustive search in
Aleph). Required coverage of the new searched concept was
set to all positive and no negative examples (this could be
theoretically also accomplished by disjunction of several
clauses but this was not the target of this test). Results
summarising 30 runs are given in table Tab.2.

TABLE II. COMPARISON OF GSAT AND GRAMMAR-BASED GREEDY
ALGORITHM

Min.
concept
length

Algorithm
type

Avg.
clauses

constructed

Standard
Deviation

Succ.
Runs
[%](1

5 GSAT 4724.5 5139.1 100
 Grammars 3835.2 3172.0 95
7 GSAT 6668.0 4797.1 45
 Grammars 4140.9 2854.9 95

(1 Number of runs terminated before reaching limit of 20.000 clauses
(avg. from 30 runs)

Apart from better consistency of stochastic grammar-
based method (lower std. deviation) these results indicate
better efficiency of grammar-based search especially in the
dataset that contains larger concepts only.

V. CONCLUDING REMARKS AND FURTHER WORK
In this paper, we approached the problem of learning

interesting concepts in relational domains (namely ILP) as an
optimisation task with the focus on utilisation of randomised
searchers. We proposed a novel approach to problem
representation that is based on context-sensitive rewriting
grammars. We also presented basic algorithm for inducing
this grammar from analysed data. Our approach is not
restricted to description of either trees-only (GP) neither to
utilisation of sampling based on propositionalisation.

Grammars represent a novel and suitable alternative for
representation of logical hypotheses as series of numbers.
They showed they are able to handle and incorporate the
domain knowledge in a transparent and declarative fashion
and therefore are suitable for utilisation within randomised
searchers (GAs, SA etc.) in the relational domains. They can
also easily reach beyond the scope of FOL (e.g. numeric
constraints).

Further work will focus mainly on following issues:
• thorough comparison with state of the art techniques

(work in progress) on various datasets;
• development of proper schemes for fast array

translation and clause coverage calculation;
• analysis of expressivity and detailed requirements on

the grammars, utilization of non-rewriting symbols
(directives) the context and its scope refinement;

• full implementation within a GE system.

ACKNOWLEDGMENT
This work was supported by Research programme of

Czech Ministry of Education (No. 1M0567).

REFERENCES
[1] S.H. Muggleton. Inductive Logic Programming. New Generation

Computing, 8(4):295-318, 1991.
[2] Srinivasan, A. and Camacho, R.: “The Aleph Manual”,

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph,
1993.

[3] J. R. Quinlan, “Learning logical definitions from relations”, Machine
Learning, 5(3):239-266, 1990.

[4] D. E. Goldberg: Genetic algorithms for search, optimization, and
machine learning. Addison-Wesley, 1989.

[5] M. O'Neill and C. Ryan: Grammatical Evolution. Evolutionary
Automatic Programming in an Arbitrary Language. Kluwer
Academic Publishers, 2002

[6] F. Divina and E. Marchiori, “Evolutionary concept learning”, in
GECCO 2002: Proc. of the Genetic and Evolutionary Computation
Conf., New York, Morgan Kaufmann Publishers, pp. 343-350, 2002.

[7] A. Giordana and F. Neri, “Search-intensive concept induction”,
Evolutionary Computation Journal, Vol. 3, pp. 375-416, 1996.

[8] A. Tamaddoni-Nezhad and S. Muggleton: “A Genetic Algorithms
Approach to ILP”, Proceedings of ILP 2002, 12th Intl. Conference on
Inductive Logic Programming, Sydney, Australia, 2002.

1454

[9] M. L. Wong and K. S. Leung, “Inducing Logic Programs With
Genetic Algorithms: The Genetic Logic Programming System”, in
IEEE Expert 10(5), pp. 68-76, 1995.

[10] P. Reiser: “EVIL1: A Learning System To Evolve Logical Theories”,
In Proc. Workshop on Logic Programming and Multi-Agent Systems
(International Conference on Logic Programming), pp. 28-34, 1997.

[11] P. Reiser: “Evolutionary Algorithms for Learning Formulae in First-
order Logic”, dissertation thesis, University of Wales, 1999.

[12] J. Hekanaho: “DOGMA: A GA-Based Relational Learner”, in
Proceedings of Inductive Logic Programming, 8th International
Workshop, USA, 1998.

[13] W.W.Cohen: “Grammatically biased learning: learning logic
programs using an explicit antecedent description language”,
Artificial Intelligence, 68(2), p.303-366, 1994.

[14] C. Anglano, A. Giordana, G. L. Bello, and L. Saitta: “An
Experimental Evaluation Of Coevolutive Concept Learning”, in Proc.
15th Intl. Conf. on Machine Learning, Morgan Kaufmann, San
Francisco, CA, pp. 19-27, 1998.

[15] F. Zelezny, A. Srinivasan, D. Page: “Randomized Restarted Search in
ILP”, Machine Learning 64(1-2): pp.183-208, 2006.

[16] E. Dantsin, T. Eiter, G. Gottlob and A. Voronkov. “Complexity And
Expressive Power Of Logic Programming”, ACM Computing
Surveys, 33:374-425, 2001.

[17] M. Serrurier, H. Prade, and G. Richard: “A Simulated Annealing
Framework for ILP”, In: R. Camacho, R. King, A. Srinivasan (Eds.):
ILP 2004, LNAI 3194, pp. 288–304, Springer-Verlag Berlin
Heidelberg, 2004.

[18] U. Rückert & S. Kramer: “Stochastic Local Search In k-term DNF
Learning”, Proc.of 20th Intl. Conf. on Machine Learning, pp. 648-
655, 2002.

[19] Chomsky, N.: Syntactic Structures. Mouton, 1957.
[20] R.S. Michalski: “Pattern Recognition As Rule-Guided Inductive

Inference”, In Proc. IEEE Trans. on Pattern Analysis and Machine
Intelligence, p. 349–361, 1980.

[21] F. Divina: “Evolutionary Concept Learning in First Order Logic: An
Overview”. AI Communications. IOS Press, Volume 19, Number 1,
pp. 13-33, 2006.

[22] Abney, S. P. “Stochastic Attribute-Value Grammars”, Computational
Linguistics, 23(4):597–617, 1997.

1455

